2#include "qip/Vector.hpp"
6#include <gsl/gsl_blas.h>
7#include <gsl/gsl_complex.h>
8#include <gsl/gsl_complex_math.h>
9#include <gsl/gsl_eigen.h>
10#include <gsl/gsl_linalg.h>
11#include <gsl/gsl_math.h>
18struct is_complex : std::false_type {};
20struct is_complex<std::complex<T>> : std::true_type {};
34template <
typename T =
double>
40 std::vector<T> m_data{};
56 explicit Matrix(std::size_t dimension)
57 : m_rows(dimension), m_cols(dimension), m_data(dimension * dimension) {}
61 Matrix(std::initializer_list<std::initializer_list<T>> ll)
64 m_data.reserve(m_rows * m_cols);
66 m_data.insert(m_data.end(), l.begin(), l.end());
72 : m_rows(
rows), m_cols(
cols), m_data{l} {
73 assert(m_data.size() ==
rows *
cols &&
74 "initializer_list must be rows*cols");
79 : m_rows(
rows), m_cols(
cols), m_data{std::forward<std::vector<T>>(v)} {
80 assert(m_data.size() ==
rows *
cols &&
81 "initializer_list must be rows*cols");
85 : m_rows(
rows), m_cols(
cols), m_data{v} {
86 assert(m_data.size() ==
rows *
cols &&
87 "initializer_list must be rows*cols");
108 std::size_t
rows()
const {
return m_rows; }
110 std::size_t
cols()
const {
return m_cols; }
112 std::size_t
size()
const {
return m_data.size(); }
116 T *
data() {
return m_data.data(); }
118 const T *
data()
const {
return m_data.data(); }
123 const T *
operator[](std::size_t i)
const {
return &(m_data[i * m_cols]); }
125 T *
operator[](std::size_t i) {
return &(m_data[i * m_cols]); }
128 T &
at(std::size_t row_i, std::size_t col_j) {
129 assert(row_i < m_rows && col_j < m_cols);
130 return m_data[row_i * m_cols + col_j];
133 T
at(std::size_t row_i, std::size_t col_j)
const {
134 assert(row_i < m_rows && col_j < m_cols);
135 return m_data[row_i * m_cols + col_j];
145 auto begin() {
return m_data.begin(); }
146 auto cbegin()
const {
return m_data.cbegin(); }
147 auto end() {
return m_data.end(); }
148 auto cend()
const {
return m_data.cend(); }
153 return m_data.data() + long(
row * m_cols);
158 return View<T>(this->
data(), row * m_cols, m_cols, 1ul);
215 [[nodiscard]]
auto real()
const;
217 [[nodiscard]]
auto imag()
const;
219 [[nodiscard]]
auto complex()
const;
248 [[nodiscard]]
friend Matrix<T> operator-(Matrix<T> lhs,
249 const Matrix<T> &rhs) {
252 [[nodiscard]]
friend Matrix<T> operator*(
const T x, Matrix<T> rhs) {
255 [[nodiscard]]
friend Matrix<T> operator*(Matrix<T> lhs,
const T x) {
258 [[nodiscard]]
friend Matrix<T> operator/(Matrix<T> lhs,
const T x) {
266 Matrix<T> &operator-=(T aI);
268 [[nodiscard]]
friend Matrix<T> operator+(Matrix<T> M, T aI) {
271 [[nodiscard]]
friend Matrix<T> operator-(Matrix<T> M, T aI) {
277 template <
typename U>
281 template <
typename U>
282 friend std::ostream &operator<<(std::ostream &os,
const Matrix<U> &a);
294constexpr auto myEps();
Matrix class; row-major.
Definition Matrix.hpp:35
T at(std::size_t row_i, std::size_t col_j) const
As above, but const.
Definition Matrix.hpp:133
const T * row(std::size_t row) const
Returns raw c pointer to start of a row.
Definition Matrix.hpp:152
Matrix< T > & make_identity()
Constructs a diagonal unit matrix (identity), in place; only for square.
Definition Matrix.ipp:143
Matrix< T > & invert_in_place()
Inverts the matrix, in place. Uses GSL; via LU decomposition. Only works for double/complex<double>.
Definition Matrix.ipp:77
Matrix(std::size_t rows, std::size_t cols, const std::vector< T > &v)
Initialise a matrix from single initialiser list. {...}.
Definition Matrix.hpp:84
std::size_t size() const
Return rows*columns [total array size].
Definition Matrix.hpp:112
const T * data() const
As above, but const.
Definition Matrix.hpp:118
void resize(std::size_t rows, std::size_t cols, const T &value)
Resizes matrix to new dimension; all values reset to 'value'.
Definition Matrix.hpp:99
T * data()
Returns pointer to first element. Note: for std::complex<T>, this is a pointer to complex<T>,...
Definition Matrix.hpp:116
std::size_t rows() const
Return rows [major index size].
Definition Matrix.hpp:108
friend Matrix< U > operator*(const Matrix< U > &a, const Matrix< U > &b)
Matrix multiplication: C_ij = sum_k A_ik*B_kj.
Matrix< T > conj() const
Returns conjugate of matrix.
Definition Matrix.ipp:163
View< T > row_view(std::size_t row)
Returns a mutable 'View' of a row.
Definition Matrix.hpp:157
Matrix< T > & operator+=(const Matrix< T > &rhs)
Overload standard operators: do what expected.
Definition Matrix.ipp:218
auto begin()
iterators for underlying std::vector (entire data)
Definition Matrix.hpp:145
T & at(std::size_t row_i, std::size_t col_j)
() index access (with range checking). (i,j) returns ith row, jth col
Definition Matrix.hpp:128
auto complex() const
Converts a real to complex matrix (changes type; returns a complex matrix)
Definition Matrix.ipp:205
auto imag() const
Returns imag part of complex matrix (changes type; returns a real matrix)
Definition Matrix.ipp:194
auto as_gsl_view()
Returns gsl_matrix_view (or _float_view, _complex_view, _complex_float_view). Call ....
Definition Matrix.ipp:310
Matrix< T > & conj_in_place()
Conjugates matrix, in place.
Definition Matrix.ipp:174
T * operator[](std::size_t i)
As above, but const.
Definition Matrix.hpp:125
Matrix(std::size_t dimension)
Initialise a blank square matrix dimension*dimension, filled with 0.
Definition Matrix.hpp:56
Matrix()
Default initialiser.
Definition Matrix.hpp:44
Matrix(std::size_t rows, std::size_t cols, std::initializer_list< T > l)
Initialise a matrix from single initialiser list. {...}.
Definition Matrix.hpp:71
T & operator()(std::size_t i, std::size_t j)
() index access (with range checking). (i,j) returns ith row, jth col
Definition Matrix.hpp:138
Matrix< T > transpose() const
Returns transpose of matrix.
Definition Matrix.ipp:111
Matrix< T > & zero()
Sets all elements to zero, in place.
Definition Matrix.ipp:154
Matrix< T > inverse() const
Returns inverse of the matrix. Leaves original matrix intact. Uses GSL; via LU decomposition....
Definition Matrix.ipp:104
View< const T > row_view(std::size_t row) const
Returns an immutable 'View' of a row.
Definition Matrix.hpp:161
std::size_t cols() const
Return columns [minor index size].
Definition Matrix.hpp:110
View< T > column_view(std::size_t col)
Returns a mutable 'View' of a column.
Definition Matrix.hpp:165
T determinant() const
Returns the determinant. Uses GSL; via LU decomposition. Only works for double/complex<double>
Definition Matrix.ipp:49
Matrix< T > & mult_elements_by(const Matrix< T > &a)
Muplitplies all the elements by those of matrix a, in place: M_ij *= a_ij.
Definition Matrix.ipp:270
const T * operator[](std::size_t i) const
[] index access (with no range checking). [i][j] returns ith row, jth col
Definition Matrix.hpp:123
auto real() const
Returns real part of complex matrix (changes type; returns a real matrix)
Definition Matrix.ipp:183
Matrix(std::initializer_list< std::initializer_list< T > > ll)
Initialise a matrix from initialiser list. {{},{},{}}. Each row must be same length.
Definition Matrix.hpp:61
Matrix(std::size_t rows, std::size_t cols, std::vector< T > &&v)
Initialise a matrix from single initialiser list. {...}.
Definition Matrix.hpp:78
T operator()(std::size_t i, std::size_t j) const
As above, but const.
Definition Matrix.hpp:140
Matrix(std::size_t rows, std::size_t cols)
Initialise a blank matrix rows*cols, filled with 0.
Definition Matrix.hpp:47
friend Matrix< T > mult_elements(Matrix< T > a, const Matrix< T > &b)
Returns new matrix, C_ij = A_ij*B_ij.
Definition Matrix.hpp:229
Matrix(std::size_t rows, std::size_t cols, const T &value)
Initialise a matrix rows*cols, filled with 'value'.
Definition Matrix.hpp:51
void resize(std::size_t rows, std::size_t cols)
Resizes matrix to new dimension; all values reset to default.
Definition Matrix.hpp:92
View< const T > column_view(std::size_t col) const
Returns an immutable 'View' of a column.
Definition Matrix.hpp:169
Proved a "view" onto an array.
Definition Matrix.ipp:7
constexpr bool is_complex_v
User-defined type-trait: Checks whether T is a std::complex type.
Definition AdamsMoulton.hpp:109
Defines Matrix, Vector classes, and linear some algebra functions.
Definition Matrix.hpp:26
bool equal(const Matrix< T > &lhs, const Matrix< T > &rhs, T eps=myEps< T >())
Compares two matrices; returns true iff all elements compare relatively to better than eps.
Definition Matrix.ipp:381