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This is a brief description of the methods used in the code for atomic structure calculations (for single-valence systems), and has
definitions for all the relevant equations. The code is available online: github.com/benroberts999/ampsci; see the “readme” file for
compiling/usage instructions. Some basic documentation for the code is also available: ampsci.dev. This is not meant as a complete
description of the physics, but references are provided to more detailed descriptions.
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1 Radial Dirac equation

An N-electron atomic wavefunction, ¥, obeys the Schrodinger
equation HV = FV¥, with

e2
) (1)

Tij

N
H= Zho(m) +

1<J

where hg is the single-particle Hamiltonian (including only the
nuclear potential), and the second term accounts for electron-
electron Coulomb interaction, with r;; = |r; —7;|. We can
re-write this as

N
H =Hy+ 0V =Y [ho(r;) +u(r;)] + 6V, (2)

where 1
oV = Z — — Zu(ri).
i<y i

The assumption is that u is a good approximation to interaction
term, allowing us to treat 6V perturbatively. The formation of
the mean-field potential u, and how to treat §V corrections, will
be the discussed in the later sections. Since the mean-field po-
tential u contains no two-particle terms (i.e., it is a function of
single-electron coordinates only), the solutions to the approxi-
mate Hamiltonian HyVy = EgV¥g may be expressed as Slater
determinants, which are formed from eigenstates of the single-
particle Hamiltonian — see Appendix A.1, and Refs. [1, 2].

For heavy atoms, relativistic effects are crucial, so we must
begin with the relativistic Dirac equation:

(hp — ) é(r) =0, (3)
where hp is the Dirac Hamiltonian (see, e.g., Ref. [3]):
hp =ca-p+cE(B—1)+V. (4)

Here, the potential V contains the nuclear and mean-field po-
tentials, and o = v%v and 8 = ~° are Dirac matrices.! Note
that we have subtracted the electron rest energy, so the total
relativistic energy is £ = € + ¢2. For bound states, ¢ — 0 as
r — oo and ¢ is regular everywhere and thus normalisable. The
set of solutions {¢;} (including the negative energy states) to
(3) form a complete orthogonal set/basis. We use the standard
normalisation choice, so that (¢;|¢;) = d;;.

IWe use atomic units: i = me = e = 4meg = 1, ¢ = 1/a = 137 (e > 0)

For spherically symmetric potentials V, we can express the
four-component single-particle orbitals in the form?:3:

G (1) = ( fuw (1) Qe (1) ) ’ (5)

T Zgnm(r) Q7/$,m('n')

where n is the principle quantum number, x = (I —7)(2j +1) is
the Dirac quantum number, m = j, is the projection of j = l+s
(total electron angular momentum) onto the quantisation axis,
and ) is a (two-component) spherical spinor,

Qem = Y (m—s2,1/2,5.05,m) Vs (n) Xs., (6)
s.=%1/2

with (j1mqjame|J M) a Clebsch-Gordon coeflicient, Y}, a spher-
ical harmonic, n = r/r, and ys, is a spin eigenstate (s, =
+1/2). Even for non-symmetric potentials, we can expand the
solutions in terms of orbitals of the form (5).

Then, we can define the radial Dirac equation in the form:

(hv" - 5) Fre = 07 (7)

where we defined the radial spinor,*

Foe= (st ®

and radial Hamiltonian,

14 (5 —0,)
hy = Ny . 9
(c(f+5r) VQCZ) ©)
The 3D (spherical) Hamiltonian can also be expressed in this
form by replacing x in (9) with —& (top right) and k (bottom
left), where k = —1 — o - 1, and kQup, = KQym. 1 will suppress
the 7 subscript and use (h —¢) F' = 0 and (h —¢) ¢ = 0 inter-

changeably, since there is no risk of confusion. The terms in ¢
are orthonormal as:

(nl'{|n,%) = /FT]ZKFTL’K dr = / (fnnfn/rc + gnmgn’n) dr = 0pm

(km|x'm’) = /QLmQﬂ/m/ dQ = 04/ 0mrm.- (10)

1.1 Nuclear potential®

For a point-like nucleus, Ve = —Z/r; in reality, the nuclear
charge is distributed across the finite-size nucleus. To form Vi,
we assume the nuclear charge follows a Fermi distribution,

p(r) = po (1 + exp[(r — ¢)/a]) ", (11)

where pg is a normalisation factor ([ pdV = Z), ¢ is the half-
density radius, and a is defined via the 90-10% density fall-off
t =4aln3 (known as the “skin thickness”), which we take to
be t = 2.3fm for all heavy isotopes. The half-density radius is

2We use the Dirac representation; see Appendix A.5.

30ur notation differs from some other places: compared to Ref. [3] we
have f <> g; compared to [2] we have fhere = Plohnson, Ghere = —QJohnson;
compared to Ref. [4] we have gpere = @gDzuba; and compared to Ref. [5]
we have fhere = JSapirstein and Ghere = _fSapirstein~

4Radial spinor defined in: /src/Wavefunction/DiracSpinor.hpp

5Nuclear potentials defined in: /src/Potentials/NuclearPotentials.hpp
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related to @ and 7.5, the root-mean-square charge radius, as
c = /(5r2,s — Tm2a2)/3. Then, Vi is obtained numerically
from (11) using Gauss’ law. The code also allows you to assume
a spherical nucleus (mainly used for testing). The root-mean-
square charge radii are known to reasonably high precision for
most isotopes of interest [6], and reasonable interpolations can
be made for the rest.

2 Numerical solution to the Dirac equation®

2.1 Bound-state solution to local Dirac equation

From Egs. (7) and (9), we can express the radial derivative as:

(5—V+202)> F (12)

cK/r

oF 1 < —ck/r

o c\—(e-V)
which has the familiar form of an ODE. Very roughly, we can
solve an ODE numerically by stepping forward if we know the
derivative of a function and the value of the function at some
previous point: F(r + §r) =~ F(r) + 0,Fdér. Multi-step meth-
ods approximate the value of the derivative along the interval
(r, 7 + or) with greater accuracy by using several points in the
estimation. We use an M-step Adams-Moulton method, which,
for a general DE of the form 0, F,, = y,, has the form

M

Frynr = Frynr—1 07> bi Yo, (13)
i=0

where y, = y(ry,), and b; are numerical coefficients. Since the
derivative Eq. (12) can be written as a matrix equation, we can
solve this equation for F,, s algebraically:

Fn+M -
M-1

[1 —or bMDn+M]_1 (Fn.g_M—l + or Z biDn+iFn+i> . (14)
=0

Therefore, we may find the value of the function at n 4+ M grid-
point, provided M — 1 previous points are known. These initial
points are determined by solving the asymptotic form of the
Dirac equation analytically accounting for the boundary con-
ditions (see Ref. [2] for details), noting that for neutral atoms
V(r) = —Z/r for small r, and = —1/r for large r.

Equation (12) has solutions for any given . We are interested
in the specific bound-state solutions [FF — 0 as r — oo, and
F(0) = 0], which occur for specific values of e. To solve the
bound-state (eigenvalue) problem, an initial ¢ is guessed, and
the DE is solved using the multi-step method. Then, small
adjustments are made to € until (a) we have the correct state
(nk) determined by the number of nodes of the orbital (n — 1 —
1) [3], and (b) we have the correct boundary conditions.

It is common to expand the orbital around r = 0 to start the
procedure, and then adjust the energy until F' — 0 at infinity.
A more numerically stable approach is to solve the DE twice,
once starting from r = 0, and once from r = oo [2]. These
two solutions are stepped inwards toward some central point,
where the two solutions are joined — one of the two solutions is
re-scaled so that fy = fo at the defined point. Small energy
adjustments are made until the lower g components also match
at this point (this ensures the derivatives match, and the join
is smooth). In our case, the two solutions are not joined at
a single point, but are instead “meshed” across a few (~ 10)

6Functions to solve Dirac equation defined in: /src/DiracODE/
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Figure 1: Hydrogen 1s orbital [f(r)], as calculated at the first though
7th iteration. For this example, the initial energy guess was —0.3 au,
and converged to —0.500006566.. au to parts in 1076 in 12 iterations.

points around the classical turning point, defined via V(rep) =
€. The meshing procedure acts to suppress numerical noise, and
makes the method more stable. This procedure typically allows
convergence of the energies to parts in 10'6; see, e.g., Fig. 1.

Note that Eq. (12) does not determine the normalisation for
F, so the solutions must be normalised explicitly [Eq. (10)].
Further, the sign of F' is also arbitrary from Eq. (12); we choose
f(r) to be positive as r — 0, as is standard.

Everywhere in the code, the fine structure constant is replaced
with: o — Aap (in atomic units, @ = 1/¢), where ag =~ 1/137.
The factor A is a run-time input option, that is 1 by default.
For example, letting A\ — 0 (i.e., ¢ — o0) allows us to perform
calculations in the non-relativistic limit. This is a particularly
useful option for checking the calculations, and for determin-
ing the sensitivity of particular observables to variations in the
fine structure constant. Modifications can also be made to the
above equations to account for the finite electron/nucleus mass
(reduced mass) — but this is not implemented in the code.

2.2 Radial grid”

The equations are solved numerically on a finite radial grid. We
define a grid on the region from ry to rmax, that has N points.
We don’t use a uniformly spaced grid, since the wavefunctions
vary very rapidly at small distances, but smoothly at large dis-
tances. We define a non-uniformly-spaced radial grid (r;) in
terms of a uniformly spaced w grid (u;+1 = u; + du). In this
case, integrals become:

/000 f(rydr — /T:MX f(rydr — /u:mx f(r(u))% du, (15)

which numerically becomes:
N-1

[ e s Y e |
w i=0

0

Su (16)

(in the code we actually use a quadrature integration formula for
the integrals). The initial/final grid points and the grid spacings
must be chosen such that the above numerical approximations
are sufficiently accurate.

In the code, we can set either a logarithmic grid, defined:

u = In(r), j—r =, (17)
U

"Radial grid defined in: /src/Maths/Grid.hpp
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Figure 2: Radial distance r; as function of grid-point, i.

or a mixed log-linear grid, defined:

dr r

u=r+bln(r), Wy (18)
which is approximately logarithmic at small distances (r < b),
and linear at large distances (typically b~ 10ap); see Fig. 2.
The logarithmic grid works very well, and allows good conver-
gence without requiring a large number of points. However, it
works less well for highly excited states, and is quite poor for
continuum states with high energy. The log-linear grid works
well in a wide range of cases, but often needs more grid points
to achieve the same numerical accuracy.

2.3 Dirac equation involving inhomogeneous or non-
local terms (Green’s Method)®

This is a brief overview; for details see, e.g., Ref. [7]. Consider
the inhomogeneous Dirac equation, with ‘source’ term .S:

(h—e)F =S5, (19)

where h; is a Dirac Hamiltonian involving only local potential
terms. We solve this for a normalisable F' using the Green’s
method for ODEs. First, take the homogeneous equation:

(hi—¢)G =0, (20)

which we solve (for a given energy ) using the regular linear
ODE multi-step methods from Sec. 2.1. Note that since F is
a normalisable solution to (19) G will not (in general) be a
normalisable solution to (20) [i.e., G is not regular at both the
origin and infinity]. Instead, we seek two solutions, which are
each bound by one of the boundary conditions; i.e., one solution
that satisfies the boundary condition at the origin, Gg, and a
second that satisfies that at infinity, Go,. The normalisable
solution to (19) that satisfies both boundary conditions is:

F(r) = Geo(r) /OT GO(;";)}(T;S)'(T/) dr'r’
o) [0 4
where ¢ = 1/a. The Wronskian,
w(r) = foo(r)QO(T) - fO(r)goo (T)a (22)

should be independent of r.

Note that this method clearly doesn’t work if w = 0; worse,
the method can be numerically unstable if S and w are both
small (if S is too small, it implies the Go oo solutions will be
similar, and thus w will be small).

8Tmplemented: /src/DiracODE/Adams_Greens.hpp

2.4 Continuum orbitals

We are sometimes interested in continuum orbitals that are reg-
ular at the origin (see, e.g., Ref. [3]). For continuum orbitals of
the desired energy € > 0, we solve using the multi-step method
described above, starting from the origin and integrating out-
wards. Note that we do not have F, — 0 at large r, and contin-
uum orbitals cannot be normalised as above. For most problems,
however, we do require normalised orbitals.
We choose energy normalisation, such that

e+de
/ . (e'km|erm) de’ = 1. (23)
E£—0¢€

This equation cannot be used directly. Instead, the solutions
are normalised in analogy with analytic Coulomb (H-like) con-
tinuum states. For Coulomb potentials, at large r we have [3]:

f(r) = \/g sin(kr +...), (24)

with 8 = /e/(e + 2¢?) (other terms in the sine function are
either constant, or logarithmic in r). At large r, the atomic
potential is also Coulomb-like. We use (24) to normalise the
orbitals by enforcing the amplitude of the sine-like orbitals at
large r to match the analytic H-like solutions [3].

To do this, we have to extend the radial grid out to very
large distances, often much larger than the normal grid used
to solve the bound-state orbitals. The orbital is solved out to
large 7 until the amplitude/frequency of the oscillations becomes
close enough to constant, and then the amplitude is re-scaled
to match (24). After solving, the orbital is only kept up until
Tmax, since larger distances typically do not contribute to any
required radial integrals.

3 Coulomb Integrals’

Many problems will require the evaluation of matrix elements of
the two-particle Coulomb interaction (see Appendix A.2). The
Coulomb integral g,pcq can be expressed:

Jabed = ab|7’12 |Cd>

/ / arddrd g nm(m)' r)bra). (29)

To evaluate these integrals, the operator r15 = |r, — ra| is ex-
panded using the Laplace expansion:

TR ID

k
T
r
120 3 0=k

k
S (-1)1CE (n1)C (na), (26)

k
r>

where r = min(r,r’), k is called the multipolarity (with pro-
jection ¢), and C;“ is a spherical tensor:

b=\ g Vi) (27)

Now, the radial and angular variables can be separated:

Gabed = Z(_l)q<"€ama|cﬁq"icmc><’€bmb|C§|/€dmd>R§bcd7
kq
(28)

9Functions to calculate Coulomb integrals defined in: /src/Coulomb/,
and functions for angular coefficients are in: /src/Angular/
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where RF, ., (the radial Coulomb integral) is:

1%m=/MHhMMMﬂ+%mMMﬁMMﬁ% (20)

and the symmetric one-body Coulomb integral is defined:
oo Tk
W) = [ 5 O + au(rgale)] & (30)
0 >

(note some other places call y¥,(r)/r the Hartree screening func-
tion). Note that y* may be called the effective one-body (radial)
Coulomb operator, in that:

(alyfale) = [ FLOWhIF( dr = Reyere (1)

It is easy to see that g is symmetric under interchange of
coordinates and/or initial/final states: gabed = Gbade = Yedab =
Jdcba- The R’;bcd integral and has more symmetries: ¢ <> a, b <>
d, (ac) + (bd):

k _ pk _ pk _ pk
Rabcd - Rcbad - Radcb - Rcdab
_ pk _ pk _ pk _ pk
- Rbadc - Rbcda - Rdabc - Rdcba' (32)

It is also convenient to define the anti-symmetrised Coulomb
integral [see Eq. (A.7)]:

gabcd = GJabed — Yabdc- (33)

By making use of the Wigner-Eckart theorem, we can define
“reduced” Coulomb integrals, which do not depend on magnetic
quantum numbers (or projections). We express them as

Yabed = Z Asbcd Q};bcd’ (34)
k
gabcd = Yabed — Yabde = Z Algbcd Wfbcdv (35)
k
where A’;bcd depends on magnetic quantum numbers (and con-

tains a sum over projections ¢), while @ and W do not. Using
the graphical formalism [1] (with Lindgren phase choice),

a c

Ay = (-1 o (36)

b T d

Explicitly,

a c

7}{;‘ — (_1)ja—ma+jb—mb+kx

b T d
S0 (L Ly e) (S b ). 67

q

where (:::) is a Wigner 35 symbol.
Using the rules for angular momentum manipulations [1, 8],
explicit equations for Q¥ and W* may be found:

Qlpea = (—1)F =00 CE CF RE, (38)
Whnea = Qipea + Phea (39)
‘a .C k
= Qbpea+ K] Y {;b ;d ,\} Abde (40)
\

(note the exchange of the final two indices inside the P* defini-
tion), where {:::} is a Wigner 65 symbol, [z] = 2z + 1,

Chy = (RallC*llms), o (41)
= (=020l (g 7 6) T+ 1o+ R), (42)

and 7(z) = 1(0) if = is even(odd) (parity selection rule). Note
that C(’jb is non-zero only if

l7a — Jb] <k <jau+ s, and I, + 1 + k is even. (43)

Our definition of Q];bcd is convenient due to its symmetries:
cra, bed, (ac) < (bd) (same as R):

k _ Nk _ Nk _ Qk
abed — cbad T YWadcb — “Wcedab

= Ql]fadc = Qllfcda = Qsabc = Q(ki:cba‘ (44)

Pk, and WE . are symmetric under the subset (same as g):

Pticbcd = Pdkcba = Pkdab = Pbkadc' (45)

Note that our QF, , differs from Qy.(acbd) defined in Ref. [9]
by a factor (—1)¥*! (and note the second and third indices are
swapped). Our Q% and W* are related to the X and Zj of
Ref. [1, 2] via a factor (—1)Je=Jt:

Xi(abed) = (=1)FCh . CryRYy e

= (=1)* Q4 (46)
Zy(abed) = (=1)7 P Wh, 4 (47)

Our definition is chosen to make full advantage of the symmetry.
It is also sometimes useful to define ch(;“)(r), which has the
form of a two-component radial spinor, such that

k(kaq k(akqg
m@@h:/am*@>mwzwm (48)

(similar definitions can be made for R, P, W etc.). Note that
we will often write ch(ga) as ch(g) for brevity, though note that

it only depends on the k,, and not n,.

4 Hartree-Fock (self-consistent field method)!’

The many-body atomic Hamiltonian may be expressed as

H:Zho(m)+zmim7 (49)

1<j

where R
ho = ca -p+c2(6 — 1) 4+ Vaue,

is the single-particle Dirac Hamiltonian including only the nu-
clear potential (see Sec. A.1). To solve the Dirac equation for an

N electron atom, we replace the complicated electron-electron

repulsion term with an approximate potential, Va(\ff);, which is
the average potential seen by the ith electron due to the other

(N — 1) electrons:
H Y ho(rd) + Vi) (50)

For any general “self-consistent field method”, we start
with an initial approximation for the electronic potential (e.g.,
Thomas-Fermi potential, or a simple parametric potential), and
use this to generate a set of orbitals for the desired subset of
atomic electrons (e.g., the core). The total electron density
formed from these orbital tells us the electronic charge distribu-
tion across the atom, which we use to generate a new electronic
potential (also accounting for the exchange interaction). In gen-
eral, this new potential will be a better approximation for the

0Tmplemented in: /src/HF /HartreeFock.hpp
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true electronic potential than the initial guess. A new set of
orbitals formed in this better potential will be a better set of
orbitals, which we use to generate a better-yet potential and
so on, until convergence is reached. At the end, the potential
used to form the electron orbitals should be the same as the
potential that is formed from the electron orbitals, and is thus
self-consistent.

4.1 Relativistic Hartree-Fock method

We start calculations from the relativistic Hartree-Fock (HF)
method, which includes the electron exchange interaction. In
this approximation, the single-particle Dirac equation is

(hur —€) ¢(r) =0, (51)
with the Hartree-Fock Hamiltonian,
hur = ca~p—|—02(,8— 1) +VnuC+VHF~ (52)

Here, Viar is the Hartree-Fock potential. We consider mainly
atoms with a single valence electron above closed shells, and
take the Hartree-Fock potential to be the potential due to the
N — 1 core electrons. This is called the V¥ =1 potential.

The form of the potential can be derived in a number of
ways, for example, by defining the mean-field potential u =
Vir such that first-order perturbation corrections vanish (see,
e.g., Ref. [2]). It is found to be

¢ T2 d)z T2
Viteda(r1) = (/ |712] r20a(r1)
4 rﬁriT TQ) d’ry ¢i(7’1)>a (53)

where the sum over i extends over all occupied electrons i =
{ni, ki, m;}. The first and second terms are the direct and ex-
change parts, respectively (the ‘Hartree’ method neglects the
exchange part). The Coulomb integrals are computed by ex-
panding rl_Ql in terms of spherical harmonics (Laplace expan-
sion) — see Section 3. Integrating over angles, and summing
over m quantum numbers we have:

Vap Fu(r) = <Z[jb]$b ygb(ﬂ) Fa(r)
b

S S M CE g (B (54)

[7a] bk
= Vaie () Fo (1) + [Vexc Fa] (), (55)

where now the b sum extends over all occupied orbitals (i.e.,
b= {ny, kp}), and y*, and C¥, are defined in section 3. The
term is the occupation fraction for core shell b (typically z;, = 1),
and :Ea’k = 13, except for b = a,k = 0: $%° = 1; its inclusion
allows an approximate treatment for open-shell systems''.
First, the Hartree-Fock equations (51), (53) are solved self-
consistently for all the electrons in the core. Since the HF po-
tential depends on the electron orbitals (which depend on the
HF potential), this equation must be solved iteratively, starting
from an initial approximation for the potential. Once the self-
consistency is reached, the core orbitals are “frozen”. Then we

HThe i sum in (53) includes a sum over all occupied m states; for partially
filled shells, this doesn’t include all m values. So, to do the sum, we assume
each m is filled with equal probability — i.e., that each m is partially filled.
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Figure 3: Electron density p =, |¢n|? for the core (solid line) and
6s valence (dashed line) electrons for Cs in the relativistic Hartree-
Fock (HF), non-relativistic Hartree-Fock (HF-NR), and Hartree ap-
proximations. Relativistic effects “pull” the electrons closer to the
nucleus, and the exchange interaction is crucial for valence states.

do the same procedure for the valence electrons; the exchange
part of the HF potential depends on the valence orbital, so these
equations must also be solved iteratively. Plots of the electron
density (p =, |¥n|?) for Cs are shown in Fig. 3, as calculated
in varying approximations.

The Hartree-Fock method is the ideal starting point for many-
body calculations, since all first-order corrections to the HF
potential (i.e., corrections involving single electron excitations)
cancel exactly [1]. Corrections to energies and wavefunctions
only arise at the second-order of perturbation theory.

4.2 Numerically solving the HF equation

To solve the HF equation for a given orbital, we use the Green’s
method as outlined above. The HF Hamiltonian is split in to
local and non-local parts as hyp = hy + V41, with

h = ho + Vaue + fVair, (56)
an = (1 - f)Vdir + ‘/;:xch~ (57)
Here,
N.—1)/N. core
f= ( )/ (58)
1 valence

is chosen so that Vi = Viue + fVar = —Zion/7 as r — o0
(otherwise, we would have V| — 0). This is done to ensure the
existence of the solution that is regular at infinity (G ), and
so that the asymptotic behaviour of the homogeneous solutions
(20) match that of the final solution.

Then, the inhomogeneous equation has the form of Eq. (19):

(h1 - 6) F=- n]F. (59)

Note that the “source” term in this case contains the solution F'.
So the equations must be solved iteratively, with some starting
approximation for the source term, so that the solution at the
nth step depends on the approximate solution from the previous
step. Further, V) and h; also depend on the solution F via (55),
and these are also formed at the nth step using F("~1Y. That
is, the equation we solve at each iteration is

(hO + Vnuc + de(:rL 1)

(o

) Fn) —

~ VAT VIR ) PO (60)

exch
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The energy guess used for the (n+1)th step can be approximated
from AV = Vé;i) — V}(I%A)7 as (™ + e

<F("_1)|AV‘F(”)> 61
(Fa—D[Fm) (61)

ER

In general, these solutions will not be correctly normalised
eigenstates of the HF Hamiltonian. We therefore make small
adjustments to the energy and orbital until F' is properly nor-
malised and thus an eigenstate of the Hamiltonian. This proce-
dure is outlined in the next subsection 4.3.

Once the energy has been fine-tuned, and we have a nor-
malised eigenstate, we continue the HF procedure. To aid con-
vergence, however, we first “damp” the orbitals as:

F— (1—-n)F+nkFoa. (62)

This both increases the numerical stability, and speeds up the
convergence. So long as the equations converge, the solutions
do not depend on the value chosen.

4.3 Energy adjustments — finding eigenstate

The above procedure finds a solution, Fy, to the HF equation
(60) given the energy guess €. Since &¢ is unlikely the correct
eigen-state energy, this solution will not be properly normalised.
Assume the correct orbital and energy can be written as Fy+dF,
and €¢ + de. Substituting this back into the HF equation, we
find a new inhomogenous equation (to first order):

(hHF - 50)6F = (5€F0 (63)
(h1 — €0)0F = 6cFy — Vo F, (64)

which we solve iteratively for F and de. As the first step, we
divide (64) by the unknown de, set V10 F = 0, and solve for
F = §F/de using Green’s method (21). Note that we don’t
need to re-solve the homogeneous equation (20), since we can
re-use the Goo, G solutions obtained when solving (60).
Since (F'4 ¢ F') must be normalised, we find the first guess for
de as (keeping only first-order terms):
(FIF) -1

T (%)

Using 0F = deF, we form Vo F and solve (64) for 6F. Then,
we make the corrections to the orbital and energy:

F=F+0F, € =¢o+ 0e. (66)
This iterative procedure is continued from Eq. (64) until the
energy correction drops below a specified value (i.e., until F is
properly normalised). This procedure is very rapid; e.g., de/e
typically converges to parts in 102 with just two iterations.

Note that, so long as it was chosen appropriately, the non-
local term V};; is small, and so the V,;;0 F' term is even smaller and
can be excluded entirely in this section without having much of
an impact. Including it, however, leads to better overall conver-
gence of the HF equations. Note that V, 0 F includes VixendF,
which must be calculated.

4.4 Approximate “local” exchange potential

There are several methods for obtaining a localised approxima-
tion to the HF potential, common examples are the “Hartree-
Fock-Slater” [10], and Kohn-Sham methods. Here, I outline a

different method that very well approximates the HF potential.
We use this only as a starting point for the HF (and TDHF)
procedure, so final result do not depend on this potential. A
good choice of starting approximation does, however, speed up
the convergence of the iterative procedures.

Introducing the notation v%, [see Eq. (54)], the non-local ex-
change part of the HF potential can be expressed

VexFal(r) = Y v (r)Eu(r). (67)
b

Multiply (67) from the right and divide by FJfF,:

[VexFa}Fg _ Zb vgb(T)Fb(r)FcI (1)
FJFa F, = FIE, F.(r) (68)
~ UL (r)Fa(r). (69)

In this way we may define Ul (r), which is a localised exchange
potential (for state a). Note that U(r) is different for each state,
and depends on Fy, and therefore must be found iteratively.

This is numerically unstable when FF, is small. However,
when F, is small, the exchange potential is less important (only
the combination Ve F, enters the equations). We proceed by
introducing a cut-off, \,, so that

U (r) = v3,(r) + > vy (r)A(r), (70)
b#a
E0ORG
A(T’) — FJFQ |fa( )| > )‘a ) (71)
0 otherwise

We don’t apply the cut-off for the b = a term, since there is ex-
act cancellation and no numerical instability. This a = b term
gives the dominant contribution to the exchange potential. The
reason this method gives such good results is that the dominat-
ing case is treated exactly. In the code, the cut-off is taken as
Ao = 1072|f, ™% where |f|™8* is the maximum magnitude for
the upper f(r) component of F,. Making the cut-off too small
introduces numerical instabilities.

5 Algebraic solution to the Dirac equation (basis)!?

In many problems in perturbation theory, a summation over the
full (infinite) set of orbitals is required. In theory, a basis of HF
orbitals can be used for this. However, such a basis generally
converges very slowly, requires a very large radial grid, and the
solutions become numerically unstable for low energies. Further,
sum over all states must include the integral over all positive-
and negative-energy continuum states. Instead, it is common
to introduce a finite basis for the radial Dirac equation, see,
e.g., Ref. [11, 12]. We assert that all orbitals go to zero at the
boundary of a subset of the radial grid, ry,ax. This is equivalent
to placing the atom in the centre of an infinite spherical “square-
well” potential. In this case, a complete set of orbitals can be
approximately expanded in terms of a finite number of discreet
states. So long as the size of the cavity is large compared to
typical radius of orbitals we are directly interested in, the results
should be independent of the cavity size.
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Table 1: Comparison between energies of spline (DKB) basis orbitals and finite-difference Hartree-Fock orbitals. The basis was constructed
using 50 B-splines of order 7 in a cavity of radius 30 ag with the first internal point at r = 10~° ap (only the first 10 splines of each symmetry
are shown). Final column shows the root-mean-square radii for the Hartree-Fock orbitals. The spline basis energies agree very well (better
than parts in 106) with the Hartree-Fock energies, so long as the cavity is large compared to the typical radius of the orbital in question; for
higher orbitals, where this is not the case, the energies diverge significantly. [e = (A — B)/A]

S1/2 Pi/2

n Espline EHF € <T2>11{F2‘ Espline EHF € <T2>11{FZ
1 —1330.1186542 —1330.1188558 —2e—7 0.03

2 —212.5644469  —212.5644963 —2e—7 0.12 —199.4294948 —199.4295038 —b5e—38 0.10
3 —45.9697097 —45.9697486 —8e—7 0.32 —40.4482937  —40.4483086 —4e—7 0.31
4 —9.5127994 —9.5128206 —2e—6 0.74 —7.4462753 —7.4462846 —le—6 0.77
5 —1.4898011 —1.4898044 —2e—6 1.88 —0.9078963 —0.9078975 —1le—6 2.15
6 —0.1273679 —0.1273681 —1le—6 6.52 —0.0856153 —0.0856159 —6e—6 8.65
7 —0.055047 —0.0551874 —3e—3 14.58 —0.0411125 —0.0420214 —2e—-2 18.16
8 —0.0240059 —0.0309525 —3e—1 25.77 —0.0110954 —0.0251205 —8e—1  30.79
9 0.0147887 —0.0198146 40.11 0.0314743 —0.0167280 46.56
10 0.0679063 —0.0137713 57.61 0.0877553 —0.0119427 65.48

Table 2: Magnetic dipole hyperfine constants A (MHz) for single-particle s-state Cs orbitals (point-like nuclear magnetisation distribution).
Calculated using the Hartree-Fock orbitals, and the DKB basis constructed using 50 B-splines of order 7 in a cavity of radius 50 ap, with

varying first internal point (A is sensitive to orbitals at small radial distances). [e = (A — B)/A]

ro=10"%agp 10~ ap 10~ %agp
n AHF ASplinc, € ASplinc; € ASplinm €
1 3.9180x 107 3.8361x 107 —2x10"Z | 3.9172x 107 —2x10"% | 3.9179x 107 —3x10~°
2 4.6208 x10° 4.5209x 10° —2x1072 | 4.6199x10° —2x10"* | 4.6207 x 105 —3x107°
3 0.3463x10° 9.1437x10° —2x1072 | 9.3446 x10° —2x107% | 9.3462x 10° —1x107°
4 1.9822x10° 1.9392x10° —2x1072 | 1.9819x10° —2x107% | 1.9823x10° 4x107°
5  2.7987x10* 27380 x 10* —2x1072 | 2.7982x10* —2x107* | 2.7988 x 10*  5x107°
6 1.4337x10% 1.4022x10° —2x1072 | 1.4334x10%° —2x107* | 1.4336 x 10° —4x107°

5.1 B-spline basis

The set of atomic orbitals are expanded as

2N
Foe = Zpisz‘(r), (72)

where {S;} are a set of 2N basis functions that form an ap-
proximately complete set over a sub-domain of the radial grid
[0, "max] (IV is defined this way because of the duel set of pos-
itive/negative energy Dirac solutions). The {p;} expansion co-
efficients are found by diagonalising the set of basis functions
with respect to the Hamiltonian matrix, equivalent to solving
the (generalised) eigenvalue problem:

> (Silhur|S;)p; = e (SilS;)p;- (73)

J

Z hijpj = €Sijp;. (74)

J

There are 2NN solutions of eigenvalues ¢ with corresponding
eigenvectors p, which correspond to the spectrum of stationary
states; IV of these correspond to negative-energy (¢ < —mc?)
states. If the {S} set is orthonormal, S;; is just the identity;
in general it is not. Both h;; and S;; are positive-definite, real,
symmetric matrices. States of different x are orthogonal, so the
hi; matrix can be chosen to be block diagonal (in x); i.e., the
expansion may be performed separately for each k.

The choice of basis must account for the boundary condi-
tions for the stationary states. A good choice of basis allows
for convergence of many-body problems with fewer basis states.

2Implemented in: /src/Wavefunction/BSplineBasis.hpp

The particular choice we use is called the Duel-Kinetic-Balance
(DKB) B-spline basis as introduced in Ref. [13];

bi(r)
(Or 4+ K/7) bi(r)
(0r — KJ1)bi—N(7)
bi—n(r)

. ) 0<i<N
SR =42 (75)
2

) N <14 < 2N.

full details, including on including boundary conditions, are
given in that work (see also [12, 14] and the review [15]). Note
that the boundary conditions are met by discarding some of the
underlying b;(r) b-splines; when we talk of an expansion using
N splines, we refer only to the ones that are kept; the under-
lying spline basis consists of a slightly larger set [13]. Another
common choice, which we refer to as the Notre-Dame (ND) ba-
sis [12] may be formed with the lower-component of (75) set
to zero for i < N, and the upper set to zero for ¢ > N; this
set requires extra conditions for the boundary conditions to be
met [12].

Each B-spline, bz(.k)(r), is a polynomial of order k (degree k —
1), that is non-zero only in the interval ¢; < r < t;y, where
{t;} are a set of (N + k — 2) “knots” (the S; basis orbitals are
non-zero also only in this region). The first “interior” knot is
placed at 79 and the last at rmax'>, and the rest are distributed
uniformly along the u radial grid (see Sec. 2.2). The piecewise
nature of the splines simplifies the integrals, and makes h;; and
S;; banded matrices, which can typically be solved with high
numerical precision.

The basis orbitals are typically defined on a smaller sub-
domain of the radial grid. The benefit of restricting the radial

13The actual first knot is placed at 0; the end knots are repeated k times.
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sub-domain for the basis is that reasonable completeness can
be achieved with fewer basis functions. However, increasing rq
too much degrades the low-r behaviour of the basis orbitals,
and making 7, too small loses the correspondence between
the “real” and basis orbitals. The ideal choice of sub-domain
depends on the specifics of the problem. Table 1 shows the en-
ergies of spline orbitals, using 50 B-splines of order 7 in a cavity
of radius 30 ap with the first internal point at r = 10 % ap.
This spline basis is orthogonal (or normal) with respect to the
Hartree-Fock core to parts in 10%; the basis itself is orthogonal
to parts in 10'5. Table 2 shows hyperfine constants calculated
using spline orbitals, which is a test of the low-r performance of
the orbitals.™

6 External fields & matrix elements (RPA)'°

6.1 Time-dependent Hartree-Fock

In the presence of a time-varying external field of frequency w,

k _ 4k —iwt | gkt +iwt
T, =tye ™ —|—th€ et

(76)

where t’; is an irreducible tensor operator of rank k (projection
q) and parity m, the orbitals will contain time-varying pertur-
bations:

b — ¢+ 0p(t) = ¢+ Xe ™ 4+ Yeivt (77)

and € — € + de(e” ™t + e™?!). Keeping terms only to first-order
in ¢, the corrections satisfy the equations (e.g., [9]):

(hap — e —w) X = — (t + 0V — d¢) ¢

78

(hup — e +w)Y = — (th1 4 6VT — 6¢) ¢, (78)
and de = (¢|t’; + 0V |@). In general, these are called the “mixed-
states” equations for orbital ¢. In Eq. (78), §V is the correction
to the HF potential arising due to the corrections {X, Y} to
each of the core orbitals:

6V = Var({o + 6¢6}) — Var({¢}).

Explicit formulas for §V will be given later. Note that Eqgs. (78)
and (79) must be solved self-consistently for all the core orbitals
to obtain V' this is known as the time-dependent Hartree-Fock
(TDHF) method. The term dV leads to important corrections
to matrix elements known as core polarisation, which will be
discussed further later.

Note that t’;qﬁa is not (in general) a state of definite angular
momentum, though is a state of definite parity, and contains
terms with j € [j, — k, jo + k] and parity 7 - 74, where m, =
(—1)la is parity of state ¢,. To continue to work in the basis of
definite angular momentum, we make use of the Wigner-Eckart
theorem to define the reduced projection [t*¢,),, which is a state
of definite angular momentum (with x = k), such that:

(79)

thoa =3 (-1 (n B J0) by [ 0ulne (30)

n

Only terms allowed by the selection rules contribute to the sum:
the 37 symbol is zero unless the triangle rule A(j,, k, j,) (and
my, = q + mg) is satisfied, and the Kronecker delta encodes
parity selection rule. The coefficient in Eq. (80) is chosen so

4The input files used to generate these tables are provided in:
/doc/examples/Cs_testBasis.in
5 Implemented in: /src/ExternalField/

that the inner-product of the projected state with ¢,, gives the
reduced matrix element of ¢:

(n|[t*baln) = (nl[t*]|a), (81)
where the reduced matrix element is defined via
jn —Mn 'n k ba
(nlthla) = (=1 (Lm0 g0 ) llttlle) (82)

The same definition is made for 6V: (n|[6V ¢a],) = (n||dV]|a).
Note that this choice of coefficient means that the reduced pro-
jection [t*¢,],, is independent of the magnetic quantum numbers
mg, My, and projection ¢ due to the Wigner-Eckart theorem.

Of course, this means the correction d¢ is also not (in general)
a state of definite angular momentum (hence ‘mixed-states’). In
the same way, we expand X and Y in terms of projected states
x and 7 of definite &:

X = Z(_l)j7L7mn (_%;Lln IC}: ,,3;;;) Onramn Xon- (83)

n

Here, the superscript refers to the unperturbed state that X is a
correction to, while the subscript refers to the angular quantum
numbers of the corrections. Note that {x,} are orthogonal (and
are orthogonal to ¢,), and form a linearly independent set of
solutions to (78). Therefore, the mixed-states equations can be
re-cast in terms of states of definite angular momentum as:

(hir — €0 — w) X% = —[(t* + 6V)@aln + [0€4]n (84)
(hur — €4 +w) My, = *[(thr + 5VT)¢a]n + [0€an, (85)

where we also defined
[0ga]n = (al|h + V|a) dan. (86)

The corrections may be expressed as:
POEDY

n#a
|n><n\t’q“T +0Vi|a)

Yo =3 p——

n#a

|n><n\t§ + 0V |a)
Eq —Enp tw
(87)

and it is possible to calculate them that way. Instead, we solve
the mixed-states equations (78) without the need for a basis.

6.2 Solving the mixed-states equations'®

The 6V term in (78) is very important and will be discussed in
the next section. Here, we will ignore how it is calculated and
just focus on solving the inhomogenous equations.

As before, we express the Hamiltonian as H = H; + Vj,;:

Hl :HO+Vnuc+Vdir+Ux (88)
an = ‘/exch - UX7 (89)
where Uy is a local approximation to the exchange potential. In
the simplest case it is (f — 1) Vair, but better approximations aid

the convergence (see Sec. 4.4).
We solve the equations iteratively, such that at the nth step:

(H —e+w) XM =
— (VX)) D (t'; oV - 5a<”*1>) Yy (90)

6Functions for solving the mixed-states/TDHF
in: /src/ExternalField/MixedStates.hpp

equations are
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Table 3: Testing TDHF method using Eq. (95) for Cs, with m =
6p1/2, ¥ = 6512 (Hartree-Fock level, no §V).

Operator (95) lhs (95) rhs €

hg1 (w=wnr) 632029312 63.2025676 6x10°°
hei  (w=0) 126.405501  126.405135 3x107°
hene (w = 0) -1.0700928  -1.0700932  4x107"

*e = (lhs — rhs)/lhs

with V,,; X = 0 initially. From Eq. (21), the solution is
X [ X8 [
Xa = E/O {X2|S} 7’2d7’/ =+ a/r {Xa |S} T’sz,, (91)

where w is the Wronskian (21), and S is the rhs of Eq. (90)
(the de term only contributes for the X term with a = a).
The X2 orbitals here are the solutions with Dirac quantum
number « to the homogenous equation (20). We defined here
the “partial” matrix elements, that include only the integral
over angular coordinates:

{Valiblin} = [ wltbudo. (92)
We similarly define the partial reduced matrix element:
— Ja—Mg o k J
{althln} = (—1pemme (Lo 00 ) {wallt¥lfan} . (93)

Then, in terms of the partial waves (x), the solution becomes:

e’} T 0 e o]
Xo 0 273,/ Xa 0o 2./
o= — S dr’ 4+ == S dr’. (94
X cw/o {Xa” }7” r cw/r X IS} rodr (94)

This is done so that we only need to calculate the (m-
independent) reduced matrix element of h. The radial integral
|xa|? is used to control convergence (for including the exchange
term). Using U, from Sec. 4.4, convergence (for a given orbital)
to parts in 107 is typically reached in ~ 10 iterations. For the
case that Kk, = K, (which only happens for even operators), one
should explicitly ensure that x, is orthogonal to ,.

One may use the perturbation expression (87) to test the
method. Consider, e.g., (excluding §V')

k
TR L 1)

= 95
€—€Em+w’ (95)

which can be calculated both ways (lhs vs rhs); see Table 3.

An important application of this technique is that it allows
calculations to be done without requiring a summation over
the complete set of intermediate states (replaced by solving
the inhomogeneous differential equation). This method of per-
forming exact summation over intermediate states is sometimes
called the Solving Equations, Mixed States, or Dalgarno-Lewis
method [16], depending on context. In this example (95) the
intermediate-states summation is trivial, since it involves only
single operator and hence only a single intermediate state con-
tributes. In general, all intermediate states (including contin-
uum and positive energy states) contribute, so this method al-
lows calculations without the need for a large basis.

Another way to test the method is to consider the parity
non-conservation (PNC) amplitude, which is a correction to the
(otherwise forbidden) E1 transition between states of the same
parity, due to the parity-violating weak interaction between the
electrons and nucleus (see, e.g., Ref. [17]). This can be expressed
as a sum over all intermediate states n:

(Bld:|n)(n|hw|A) (Blhw|n)(n|d.|A)
Z 6A_Envv I W

El()zl\)TC = I (96)

EB —E&n

Table 4: Comparison of PNC amplitudes (at the HF level) for '**Cs
as calculated using the TDHF method, and direct summation using
a spline basis [in a cavity of (107%,50) ap using N splines of order ].

Direct Summation: N/k

Transition TDHF 50/5 60/6 70/7
6s — 7s -0.73954  -0.73948 -0.73953 -0.73954
6s — 5d3/  -2.4000 -2.3998 -2.4000 -2.4000

where d is the E'1 operator, and hy is the PNC operator. Using
the TDHF (Dalgarno-Lewis) method as described in Sec. 6.1,
this can also be expressed in two other formally equivalent ways:

B = (Bld[sA™) + (6B™)|d. | A) (97)
— (6BD |hy|A) + (Blhw|6AD), (98)

where § A(W/9) is the correction to orbital A due to the weak/E1
interaction. Comparing the results of Egs. (97) and (98)
tests the numerical accuracy of the Dalgarno Lewis (solving-
equations) method, and comparing these to the result of (96)
gives a good test of the basis. The two forms of the Dal-
garno Lewis method agree to parts in 108. Comparison between
the PNC amplitude as calculated using this and the direct-
summation method is in Table 4.

6.3 Core polarisation (RPA)'"

This section largely follows Ref. [9] (see also [18-21]). In the
presence of an external field, the core electrons become per-
turbed (77), and a correction to the HF potential is induced.
This leads to important corrections to the matrix elements of
the external field operator. This effect is often called core polari-
sation, and is particularly important since it involves corrections
with single excitations from the HF core (in the absence of an
external field, the lowest-order corrections to the HF potential
involve double excitations). The method described here is often
referred to as the random phase approximation (RPA).

To account for core polarisation, the set of TDHF equations
(78) are solved self-consistently for each of the core orbitals (see
Sec. 6.1). The 6V term is the correction to the HF potential:

§V = Vir({thp + 60°}) — Var ({ts}), (99)

where {1, } denotes the set of all core orbitals.

The TDHF equations are solved iteratively, updating the 6V
and Je terms at each step until convergence is reached; i.e., at
the nth step, we have

(hie — & —w) X§ = — (E 4oV 55("—”) Uy, (100)
with 6V = 0 for the initial iteration (similarly for Y'). The de
term only survives in the equations when 8 = b [see Eq. (91)].

Combining Eqs. (99) with (77), (83), and (53), we have:

6V¢a(rl) =

3’I°Q . .
> [ 5 (6l [X (ra)n(ry) - éulra) X ()]

|7 12|

+ Y (rs) [¢i(r2)da(r1) — ¢a(7°2)¢i(7‘1)]>~ (101)

TImplemented: /src/ExternalField/CorePolarisation.hpp, TDHF.hpp
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v w v w

v v

w
Figure 4: Diagrams representing the lowest order direct and ex-
change core-polarisation (RPA) corrections to the (w|h|v) amplitude.
Wavy line is Coulomb interaction, dotted line is external field (k).
All internal lines are summed over: forwards lines are virtual excited
states, backward lines are holes in the core. In higher-order diagrams,

each h vertex is corrected again by these four diagrams (RPA).

The reduced matrix elements of 6V are:

(_ 1)777, _.jB+k

GullaVlign) = >

bs

(WSbaﬁ + Wfﬁmb) ) (102)

where the reduced Coulomb integrals W* are defined in sec-
tion 3. The sum b runs over core orbitals, and S runs over all
corrections to b [Eq. (83)]. The prime (5’) means the ng orbital
is used; no prime means yz. The equation for (¢,||6VT||¢,) is
the same, but with 8 < 3.

The amplitude for a transition from state v — w in the TDHF
method can be found from analogy with regular time-dependent
perturbation theory (e.g., [22]), where

Mo
Ey —Ew T+ W

~

wbe—iwt

3ty (1)

(keeping only the resonant term with w =~ &, —e,,). At the same
time, from Eq. (78), we have

(Yulty + V) .,
— ¢ .

_ v\ —iwt __
(1al60, (1)) = (| X)e™ ot = STt (103)
Combining leads to the expression:
My = (w[th + 6V |v). (104)

Since 0V was found self-consistently, the matrix elements in-
clude core polarisation to all-orders [9, 23]. This is equivalent
to the RPA method (see, e.g., Ref. [2]). If the equations (100)
are solved just once (without iterations), it corresponds to the
lowest (first) order correction to the amplitude, which are shown
in Fig. 4. Further iterations correspond to higher-orders.

6.4 RPA diagram technique'®

The core polarisation correction to a matrix element can also
be taken into account by directly evaluating the four diagrams
in Fig. 4. To lowest order, the matrix element of operator h is
hl(?). The first-order correction is then [1]:

hamgimja

5hij:2€a—5m—w+z

ma ma

(0) ~ (0) ~

hmagiajm

—_— 105
p—— (105)

8Implemented in: /src/ExternalField/DiagramRPA.hpp

10

where Gabed = Gabed — Yabde, With gepeq being the two-electron
Coulomb matrix element (see appendix for definition). The a
sum runs over all occupied core electrons (n, £, m), while m runs
over all virtual excited states.

In the RPA method, the lowest-order matrix elements in dh;;
(105) are then replaced with the corrected values. This process
is repeated iteratively (for all core states ¢ and j) until conver-
gence is reached; i.e., at the nth iteration we have:

Shiy =
> ( ) (106)
ma

The reduced matrix element in the RPA approach is then:

(Rt + Oh2 N Giajm
€q —Em tw

(him + 6l Gimia
Ea —E&Em — W

(illRl13)"7% = GllRl15) + Gillohl1j), (107)
with
. et [ Sallllm) AW,
_ _1 Ja—Jjitk mja
(il1ohlls) = o ; ) ( —
i (IRNQ)PAWE
+ (=1)FeIm 2|, (108)
Eq —Em Tt W

(sum is now over orbitals n, k). RPA matrix elements between
valence states have the same expression (the equations need only
be iterated for the core electrons). Note that W depends only on
the rank of the operator, so in theory, they need only be calcu-
lated once. In practise, we only calculate Wi’jnja when hgm # 0,
meaning effectively that W also depends on the operator parity.
It can be shown the diagram and TDHF methods are equivalent:

(il|6n15) = (il|6V[7) [see Eq. (87)].

6.5 Core polarisation (“basis” technique)!'®

Sometimes, the TDHF equations do not converge due to in-
stabilities in solving the mixed-states equations (78). There
are several ways to proceed in these cases, including using the
diagram method as above, and using algebraic (matrix) tech-
niques [21]. We also implement a method where the TDHF
equations are solved using perturbation theory, by expanding
the x and n functions over a basis using Eq. (87). (Note that,
unlike the matrix technique, this required iterations since the
expansion depends on §V.) Then, 0V remains as Eq. (102).
This allows inclusion of the Breit effect into 6V (see Sec. 11.1)
(which are not so simple to include in the diagram method).

7 Correlation corrections?’

Correlation corrections are the deviation from the pure single-
particle picture, and correspond to many-body effects beyond
the mean field (Hartree-Fock) approximation. The many-body
atomic Hamiltonian may be expressed as

H = Z hHF(rz) + 5‘/corr7 (109)

where hyr(r;) is the single-particle HF Hamiltonian (52), and
1
5V::0rr == Z E - ; VHF(rz)

1<j
Implemented in: /src/ExternalField/TDHFbasis.hpp
20Tmplemented in: /src/MBPT/CorrelationPotential.hpp

(110)
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Figure 5: Goldstone diagrams for the second-order correlation cor-
rection to the energy for valence state v. Backward facing lines denote
(single-particle) states in the core; n and m are virtual excited states.
Diagrams (a) and (c) are direct diagrams, (b) and (d) are correspond-
ing exchange diagrams.

is the residual Coulomb interaction (beyond the mean potential)
that may be taken into account perturbatively. We consider
the case of an atom with a single valence electron (v) above
closed shells. In the single particle picture, this perturbation
corresponds to residual interactions of the valence electron with
the indevidual electrons in the core. Starting from the Hartree-
Fock method with a VN~ potential, there are no first-order
corrections to the wavefunction (that is, corrections involving a
single core excitation) [1].

Notation: I use the convention that letters at the beginning
of the alphabet (a, b, ...) denote occupied core states (or holes),
those from the middle (n, m, ...) denote virtual excited states,
and those from the end (v, w, ...) denote valence states. The
letters (4, j, ...) are dummy indices that may stand for any state.

7.1 Second-order correlations: Goldstone technique

This section follows closely the method from Ref. [9]. Goldstone
diagrams for the second-order correction to the valence energy
are shown in Fig. 5. This can be expressed as [2, 9]:

SE, = Z

amn

GunabJbanv
+En —Ea— &b

GvamnYGnmav

Ey +Eq —Em —

+Zb:€v . (111)

En

where m and n run over (unoccupied) virtual excited states,
and a and b run over (occupied) core states (there is an implicit
sum over magnetic quantum numbers here). The first term cor-
responds to the diagrams (a) and (b), the second to (c¢) and
(d) [Fig. 5]. Integrating over angular coordinates, and summing
over magnetic quantum numbers, gives [9)]

”/'k
'uamn vamn

5v+5a_5m_5n

+ E Qvnba vnba
g
abn Y

+éen—€h—Eq

X2

>, (112)

where Q*, W* and are given by Egs. (38), (39), and we used
the symmetries and angular identities given in Section 3.

We define the correlation potential, i, so that its matrix el-
ements correspond to the energy shift: (v|S®|v) = §E,. We
may express the (energy dependent) second-order correlation

11

potential as

222) = Z [kl

—~ [l

QR Y (Wae)

E+Eq —Em —En

£

abn

(2

amn

U)> <Wk(v) |

nba nba ) (113)
eten —€p—eg/’
which is sometimes called the self-energy operator. This has the
form of a sum of operators, which can be expressed in (radial)
coordinate space as

3 L QM (r) Wit (1)
G( v) — nba nba . 114
nba (rra,e ) & (k][jo] €+en—ep—ea ( )

Thus the correlation potential may be expressed as

2&2)(’/“1,7“2) = Z [Ggmn(’l“l,?“g, )+ana(7“1,7”2,€)] . (115)

abnm

Note that ¥ is a matrix in (radial) spinor space:

. (fQ(Tl)fW(T2) fQ(Tl)QW(T2)>
9gQ(r1)fw(r2)  gq(ri)gw(rz))’

where f and g are the large and small components of the Q/W
radial spinors. Each of these four terms can themselves be rep-
resented as square matrices (on a radial grid). It is common to
only calculate the first (f f) term; it is also common to store the
3 matrix on only a subset of the radial grid.

(116)

7.2 Correlation potential method (Brueckner orbitals)

In the correlation potential method [24, 25], the non-local energy-
dependent ¥ operator is added to the single-particle Hartree-
Fock equation for the valence states:

(hap + 32 )ipB) = By (Br), (117)

The resulting orbitals, known as Brueckner orbitals®', include
the second-order correlation effects. This means, for example,
the dominant correlation corrections can be included into the
calculation of matrix elements simply by using the Brueckner
orbitals, e.g., (a"F|9|bHF) — (aPBr|5|6BT). We will drop the (Br)
superscript from here on unless it is necessary to avoid confusion.
The iterations of the Hartree-Fock equation for the valence state
actually means that certain classes of diagrams are included to
all orders; this is called the chaining of the self-energy operator.
The ¥ operator should be evaluated at the Hartree-Fock en-
ergy of the valence state. The correlation potential depends only
weakly on ¢, [see Eq. (111)], so it is often instead found at the
energy of the lowest valence state v of the given symmetry (since
this is typically where the highest accuracy is required, and be-
cause the correlation corrections are larger for lower states).
One may also include the correlation corrections into a set of
basis orbitals by adding the correlation potential to the Hartree-
Fock Hamiltonian when solving the eigenvalue problem for the
set of B-splines; i.e.,
hij — (Silhur|S;) + (Si|%[S;) (118)
in Eq. (73). This leads to an (approximately) complete set of
orbitals that include correlation effects. These orbitals may then

21Note that the exact definition of “Brueckner” orbitals varies slightly
depending on the source; we use the definition from [24].
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be used in calculations requiring a summation of a complete set
of orbitals; so this method allows the inclusion of correlation
corrections into such calculations in a reasonably simple way.
The correlation potential can also be taken into account in
the TDHF method for the valence state (see Eq. (78)):
(hp + S —c—w) X == (+ 0V —d2) 5. (119)
This gives a means of including the correlation corrections into
the Dalgarno-Lewis (Mixed-States) method.

8 Correlation potential: Feynman method

In the previous section, I described the usual second-order
many-body perturbation theory method using the Goldstone
diagram technique. Here, I outline an alternative approach: the
Feynman method. This method does not require a summation
over intermediate states (i.e., no basis is required), but instead
introduces an integral over frequencies. Importantly, the Feyn-
man method allows several classes of dominating higher-order
corrections (Coulomb screening and the hole-particle interac-
tion) to be included to all-orders by an exact summation of
series of diagrams. This section describes the method as devel-
oped in Ref. [26], and follows that work closely; see also [27-29].
In this section, I will sometimes include subscripts on the
Dirac bra/kets to indicate which coordinate they belong to. I
will also abuse the Dirac notation here so that |a); is just a
short-hand for ¢, (71); note that when the coordinate index is
shown, there is no implied integration in the braket, e.g.:

(al1[b)1 = @l (r1)gp(r1), while ({alb) =/d3?°’¢l(?")¢b(7")-

8.1 Feynman Green’s function

First, we introduce the Feynman Green’s function, which can
be expressed as (see [26, 27] and references therein):
core exc.

€—¢Eq— 10

Note that, if € is the (single-particle) ground-state energy, ¢ >
€q4, but € < €,. Conceptually, the simplest way to evaluate it is
by summation over the complete set of core and excited orbitals
using a pseudospectrum basis as described previously. It is also,
however, possible to evaluate the Green’s function exactly (up
to numerical errors) without the need for a basis.

Consider the inhomogeneous Hartree-Fock equation including
the direct (Vg) and exchange (Vi) potentials, and its homoge-
neous counterpart (without exchange):

(ho +Va—e)p = —-Vio
(h()—f—Vd—E)X:O,

(121)
(122)

with yo being the homogeneous solution regular at the origin,
and Yoo that regular at infinity. The local Green’s function
(without exchange) can be expressed in coordinate space as:

GO — GO(Tl,rQ) XO(T<7 )XOO(T>? n)7

w

(123)

where r« = min(ry,r2), and w = (fogoo — foog0)/a (w is inde-
pendent of r, and f, g are radial components of x). Exchange
can be taken into account by solving the Dyson equation [27, 28]

~ A PO e S
G =Go+ GV = [1 - GOVX} Go. (124)

12

The local direct and non-local exchange operators are

core core

Va={al@la), and > [a)Qal,  (125)
respectively, with the (two-particle) Coulomb operator:
Q(Irl, T2) = T1_21~ (126)

These operators may be represented as coordinate matrices:
e.g., G& G(ry,re). Multiplication is understood to mean:

W = XYZ = W(Tl,’l’g) = // d’l’id’l"jX(’f'l,Ti)Y(TZ‘,’I"j)Z(T’j,Tg).
Note that G, @, V etc. are symmetric.

8.2 Two useful integrals

Here, I present two useful analytic integrals involving Feynman
Green’s functions. These are evaluated analytically by extend-
ing the integral over the complex plane. As a reminder, Cauchy’s
integral formula is

f()

= 2mif(a).
The first integral®?
dw »
/ G12(€Z +CLJ)G34(€] +CU) (127)
-y / a)1(aly (7)1 (nla
- €1+W*€afl5 gi+w—¢e,+1id
O T
Ejtw—ep—i0 € +tw—egp+id

can be expanded to four seperate terms, each with a pair of
poles. Consider the first (“a,b”) term of (128):

[o (=) =)

which has poles at w = ¢,/ — €;/; + 9. By closing the contour
in the lower complex plane (Fig. 6, left), it is seen the integral is
zero. The same is found for the last (“n,m”) term by closing in
the upper plane. The other two terms are non-zero, and can be
evaluated by closing in (e.g.) the upper plane; an example for
the “a,m” term with pole at w = &, — &; + i is given in Fig. 6
(right). Together, this gives the final expression:?3

dioJ
2w

(129)

dw - A
/ TGlQ(st' + w)G34(5j + w)
_ )1
Z%; [53

The second integral is found in the same way:

(al2|n)3{nls
— &+ Eq —€n

n In)1(nl2 |a)s{als

€ —€j+€Eu—En

] . (130)

dw - R
/%Glz(é‘i + w)G34(€j - w)

. alagb b4
=ZZ['><">3<'

E; Ej —Eqg — €
abnm it J @ b

~m)a(nl2 m>3<ml4] '
€ t+Ej —Em—é€n
(131)

22Note |G(w)| — 0 as |w| = oo (w € C); see Eq. (120).
23] renamed m = n in the first term, and b = a in the second.



ampsci: Method

B. M. Roberts — July 2024

Im(w)

Im(w)‘ .

€,—€1+i6 Ep—Ex+i6 Re(w)

=| 5 Re(w)

. . N
€,—€1+i6 Em—Ep—i

Figure 6: Contours for the “a,b” and “a,m” terms of Eq. (128).

€ etw € € e twy +wy e
‘ﬂ
O o

Figure 7: Second-order direct (1) and exchange (2) correlation di-
agrams in the Feynman technique. The straight lines represent
Hartree-Fock (bound-electron) Green’s functions (120), the wavy
photon lines represent the (non-relativistic) Coulomb operator (126).

8.3 Feynman method for second-order correlations

The second-order correlation corrections are given by the dia-
grams presented in Fig. 7. The electron loop in Fig. 7 (1) may
be written in terms of the polarisation operator:

Iyp(w) = /

Note that this is a (largely) non-relativistic many-body prob-
lem; the polarisation is of the atomic core, not the vacuum,
and relativistic corrections to the Coulomb operator can be ex-
cluded (see Breit and QED corrections discussed later). In this
formalism, Feynman diagrams carry a phase factor of [27]

7G12( /)égl(w-i-fl). (132)

Mo (-1, (133)
where Ng is the number of Coulomb (wavy) lines, and N is the
number of closed loops.

Using Eq. (130), the integral over frequencies in the polarisa-
tion operator can be performed analytically, yielding:

Y {Iaea } sa)

an

[n)2(nl1|a)1(ala
Eq +wW—¢€n

aly [n)1(nl2
—w—¢,

which can be further simplified to:

= zz |a) [Gex w) + G (e, + w)} (al.

Here, Go* = G — Geore only includes excited orbitals, and may
be formed without the use of a basis using Egs. (124) and (120),
so long as the core orbitals are known. It is more numerically
stable to calculate it as:

(135)

core

=G - la)alG.

With these, the direct (d) and exchange (x) correlation po-
tentials can be expressed in the Feynman approach as

(136)

B . dw - S A
232) ://dd’l"idBTj/§G12(5+W)Q1¢Hij(w)Qj2, (137)
and
~ dw1 dwg
3 3
E / d°r;d rj/ or on
Grile +w1)Q1;Gij(e + wi + w2)QinGiae +wa).  (138)

13

Table 5: Expectation values of the direct part of the correlation po-
tential (v|Xg4|v) for the lowest valence states of Cs (atomic units).
The first four rows correspond to the second-order Goldstone tech-
nique using various number of states in the MBPT expansion, and
the fifth row is the second-order Feynman technique. The final two
rows are the screening and hole-particle corrections (see below).

681/2 6p1/2 6P3/2 5d3/2 5d5/2
30spdfghi -0.01906 -0.00771 -0.00693 -0.01226 -0.01182
40spdfghi  -0.01915 -0.00768 -0.00690 -0.01228 -0.01182
50spdfghi  -0.01919 -0.00769 -0.00691 -0.01230 -0.01184
60spdfghi -0.01920 -0.00769 -0.00691 -0.01230 -0.01184
Feynman -0.01920 -0.00766 -0.00689 -0.01236 -0.01190
dScreen 0.00631 0.00246 0.00221 0.00331 0.00313
oh-p -0.00769 -0.00359 -0.00322 -0.00477 -0.00457

The signs are due to Eq. (133). In the Feynman technique, as
compared to the Goldstone technique, we avoid the need for a
summation over the complete set of states, but instead require
integration over frequencies. Note that ¥ = ¥4+X is also called
the self-energy operator. Comparison between the Feynman and
Goldstone corrections shown in Table 5. Note that the Feynman
direct diagram is calculated much faster than the Goldstone one
when a large basis is required

8.4 Feynman to Goldstone transformation

Here, we show the connection between the Feynman and Gold-
stone approaches, by demonstrating the Feynman expressions
reduce to the Goldstone ones by integration over frequencies.

Inserting (135) into the direct term (137), we get

n® :i//dsrid‘grj/ Gia(e +w)Q1:Q0
<Ia>z<allé‘i§(sa —w) + |a)1(a2G5 (ea + w)>~ (139)

The two required frequency integrals:

w ex (nf2 [m)i(m;
/2 E+W)G (a Ze—I—ea—em—sn
dw (b2 [n)j(n|;
e Ge u A971NTI2 1T/ e
2 a—l—w) (E —i—w ZsfsafsbJrsn

bn
(140)

are evaluated using Egs. (131) and (130), respectively, noting
that only the excited states appear in the expansion for G°*.
Bringing these together, and evaluating the direct matrix ele-
ment (using notation |ab)13 = |a)1|b)2), we have:

5ed

v

(v[=P o)
— Z (va|Q|nm)(mn|Qlav)

— E+Eq —Em —En

-y 2>

anm abn

(vn|Q|ba){ab|Q|nv)

E—Eq—EptEeEn

+>

abn
GunbaJabnv

E—€q—cEpten

GvanmYmnav

E+Eq —Em —

(141)

€n

which is the expression from Goldstone diagrams (a) and (c).
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For the exchange term, we first integrate over wy, with:
dw1 ~
—Gh(a +wi)Gij(e +wi +wa)

/5
|la)1(ali|n)i(nl; . |n>1<"|z‘|a>i<a|j>

:ZZ<W2+EQ_En —Ww2 +E€q — €p
ws)lahifal;]  (142)

(143)

=iy {|a>1<a|z' G (q +w2) + G55 (e —
= i Tyiij (wo)

which was evaluated using Eq. (130). The T'y;;; term is de-
fined for notational brevity; note the similarity+difference to
II;;. This leads to two seperate integrals over ws:

dUJQ
on

dUJQ Aex
? li( €a

which were evaluated using Eqgs. (130) and (131), respectively.
Finally, combining all the terms, we have:

a — b —¢n

(144)

[m)1(mliln); <nlz
m+En —€— Ea

)GJQ(S +LU2 = ZZ

X
o

(0[=P]0)
-y (vn|Qlab){ab|Q[vn)

E—Eq—Ept+en

{va|QJmn) (mn|Q|av)

E4+Eq —Em —En

-2

abn anm
GvnabYabun Juman9mnav
:_Zsfe —ete _Zers — Em — En (145)
anm a b n abn a m n

which is exactly the expression from Goldstone diagrams (d)
and (b), respectively (note that g;jx = gjiik)-

8.5 Angular separation

Using the same angular identities used for the Goldstone case:

Z Gijkl Jikji = Z[ ] (C c mkl) (146)
mMi,j,k,l
Z Gijkl Gklji = Z( e oE Cuc C
Mi,j,k,1 A
x {3; ‘.771; lAjl} Rz]kle/'\jlk (147)
— Z( 1)HtATL Lff)cz RZMRZ_AW (148)

A

where ij);d is defined for convenience in the last line, the corre-
lation potential (for angular state ,) can be written:

(“) E \2
O’ua ~
/ ) €+w quz z q327
(149)
()
(,ﬁv) dwl d(.dg (71)k+)\ L
Pz = // 2m 2w ] 2 B

a,B,y
x> gf(e +wi) df; g (e + wi +w2) @ (e + wa). (150)
ij
Here, the £ and A sums are over Coulomb multipolarities, and
the (k = «, 8,7) sum is over angular quantum numbers (partial

waves). In theory, the k and k sums are infinite; in practice
one (or both) must be truncated. The ij sum is the finite-grid
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Figure 8: Rotation of the contour for integrals in the form of
Eq. (155). Dots represent Green’s function poles, crosses are po-
larisation operator poles (only bound-state poles are shown, there
are also continuum-state poles at larger |wl|), o is the energy of the
deepest core state, and |Ag| is the energy gap between the core and
excited bound states.

implementation of radial integrals; the integration measures are
included in g¢;;.
The radial Green’s function is

i Fna(rl)F'rJ{oz(TQ) _ X%(T<)Xgo(T>)
€ — €na w ’

n

9gi2(€) = (151)

where the sum runs over all orbitals with x = k,, and the x are
solutions to the radial Dirac equation with x = k.. As described
above, g should be corrected to account for exchange, with

core

ZZ

The radial Coulomb operator is (see Laplace expansion)

(nu)

x 12 = FT(7"2)QA1A2- (152)

k

QAZ - k‘-‘,—l drldrja (153)

and the radial polarisation operator is

core

Ck 2
iy (w —ZZPHZ( an) [ggn( €a— )+gf§"(5a+w)},

(154)

where
Py = Fa(Ti)F;r(rj)

is the (radial) projection operator onto single core state a.

8.6 Numerical frequency integration
The direct and exchange potentials involve integrals of the form:

/g(&-i—w)w(w)...d—w

= (155)
The integrand contains poles from the Green’s function at w =
€n—€—10 and w = ¢, — e + 10, and poles from the polarisation
operator at w = ¢, — &, + 46 and w = &, — g, — 1. If ¢ is
the energy of the lowest excited state, then there are an infinite
number of poles from the polarisation operator in each of the
regions w < —|Ag|, and |Ae| < w < oo, where Ac is the energy
gap between the highest core and lowest excited states (for Cs,
|Ae| ~ 0.7au). From the Green’s function, there are a finite
number (equal to the number of core states) of poles in the
region —|eg| < w < —|A¢gl, and an infinite number of poles in
the region w > 0 (see Fig. 8).
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F Qe O+

Figure 9: Screening of the Coulomb interaction: each Coulomb line
is replaced with this infinite series of screening diagrams.

If we were to evaluate the integral (155) numerically using a
semi-circle contour closed in the upper/lower-half of the com-
plex plain, it would involve evaluating the integrand arbitrarily
close to the poles, which is problematic. Instead, we rotate the
integration contour anti-clockwise by 90°; the straight part of
the contour is at fixed Re(w). This is shown in Fig. 8. It is
clear from Cauchy’s theorem that the integral over each of the
contours is the same and equal to the required integral (155).

Using the contour as shown in Fig. 8, the integral becomes

0

/ + V (156)
—00 curved

If the contour radius (i.e., maximum value of w; ) is large enough,
the value of the integrand around the curved part of the contour
~ 0, so only the w; integral needs to be evaluated. It is desirable
to place w,-, which remains constant throughout the integration,
as far away from the poles as possible. There is a region with
no poles between 0 and |Ae|, so we take w, ~ —|Ag]|/2.

Finally, to perform the integrals numerically, we must evalu-
ate Green’s functions at complex frequency values: w = w, +iw;.
This can be done in analogy with Eq. (124):

dwi
2w

g(e + wp + iw;)m(wr + iw;) ...

gle +w) = [1+ iwig(e + wr)] " gle +wy) (157)
This g(e 4+ w) will be a complex-valued matrix; g(e 4+ w,.) is real-
valued. The integration over w; can then proceed using standard
numerical integration.

9 All-orders correlation potential

The three most important corrections beyond the second-order
correlation potential are: (i) the screening of the residual
Coulomb interaction by the core electrons [26], (ii) the hole-
particle interaction [28], and (iii) the chaining of the ¥ opera-
tor [24, 25]. These effects are described by a series of diagrams
that can be summed exactly to all-orders using the Feynman
technique. The method described here was developed in the
above works, and may be called the Dzuba-Flambaum-Sushkov
(DFS) method; it is also called the perturbation theory in the
screened Coulomb interaction (PTSCI) method.

It is important to stress a key advantage of the current
method: its numerical efficiency. Using the Feynman approach
for the second-order (direct) diagrams takes roughly the same
computational power as using the Goldstone method (in fact,
it is a bit faster). Then, the inclusion of the all-orders screen-
ing and hole-particle interaction has effectively no impact on
the computer time required. That is, calculating the all-orders
correlation potential is roughly just as computationally inten-
sive as calculating the second-order corrections using the usual
(Goldstone) many-body approach. This is in stark contrast to
other methods (e.g., coupled-cluster), which require huge com-
putational resources for all-orders calculations. Further, our
method takes into account screening effects with double, triple,
quadruple, and higher core excitations, in contrast to all-order
coupled-cluster methods, which typically include only double
(and sometimes partial triple) excitations.
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Figure 10: Hole-particle corrections to the polarisation operator

9.1 Screening of the residual Coulomb interaction

The most important correction is the the screening of the resid-
ual Coulomb interaction by the core electrons, which can be
taken into account by a continued insertion of polarisation loops
into the Coulomb lines, as shown in Fig. 9. This chain of dia-
grams represent the matrix geometric series:

Q=0+ Q(—iTIQ) + Q(—i[IQ)* +....

Note that each additional IIQ term carries a factor of (—1) due
to Eq. (133). The series may be summed exactly as

(158)

~ R N ~1-1 N -1
Ow) =0 [1 + iH(w)Q} - [1 +¢Qn(w)] 0. (159
This is the screened Coulomb operator, and includes electron
screening to all-orders. This is enhanced by the number of elec-
trons in the outermost core shell, and the relatively small energy
denominator associated with their excitation, see Eq. (135). We

could also instead write the series (158) as QIIQ, with

[1 +ic}ﬁ(w)} - [1 +iﬂ(w)@}71f[(w). (160)

(w) = T(w)

Inserting the screened Coulomb operator into Egs. (137) and
(138) yields the new correlation potential:

dw A ~
Ed ://d?’T‘idSTj/§G12(5+W)Q1iHij(w)Qj2(w),
(161)
S = —//d‘gmd‘grj/ dooy dwy
2 27

Gri(e + Wl)élj (wl)éij(ﬁ + wy + w2)©i2(w2)éj2(5 + wa),
(162)

which includes screening to all-orders. Note that the screened
operator should replace only a single Coulomb line in the direct
diagram, but both in the exchange diagram.

Note that this method takes into account screening diagrams
with double, triple, quadruple, and higher core electron exci-
tations. This is because the Feynman diagram technique con-
tains all possible time orderings of the polarisation loops; there-
fore the screening diagrams contain any number of excited elec-
trons [26]. This is in contrast to the widely-used “singles-doubles
coupled-cluster method”, where only double excitations are con-
sidered (and sometimes a selection of important triple excita-
tions). There are, however, some perturbation-theory diagrams
included in the coupled-cluster methods that are not included
in our approach. The most important of which (the so-called
ladder diagrams) are very small, and can be included into our
method by means of the method presented in Ref. [30].

9.2 Hole-particle interaction

The chain of diagrams corresponding to the hole-particle inter-
action is shown in Fig. 10. Physically, this effect arises due to
the deviation of the (direct) Hartree-Fock potential for the ex-
cited core electron in the polarisation loop from that for the
non-excited one [28]. In other words, it corresponds to an alter-
ation of the core potential due to the excitation of the particle
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Figure 11: All-order screening of the Coulomb operator including
the hole-particle interaction.

from the core to the virtual intermediate state; the excited core
particle in the polarisation loop moves in the field of N —2 other
core electrons instead of the usual V¥ 1 potential.

In practical Hartree-Fock calculations for occupied core
states, the self-interaction term is included in the direct poten-
tial; this is then exactly compensated by the corresponding term
in the exchange potential. However, for the state excited from
the core (af a,|0)), no such cancellation occurs. Therefore, the
self-interaction term should be removed for the excited states.

Following the approach from Ref. [28], the potential that si-
multaneously describes the occupied core and excited states is

V=vN-1_ (1 - Pcorc)‘/O(l - Pcor0)7 (163)

where
core

Pcore = Z la)(al

is the operator of projection onto the core, and V; is the self-
interaction part of the Hartree-Fock potential for the outgoing
electron:

(164)

even

Ve (r) = yaa(r) = Y

-~ Ti)

k )2
sl )

(165)

We use Eq. (163) since the Green’s function contains both core
and excited electrons [see Eq. (120)]; P is introduced to ensure
orthogonality of the orbitals. The G** function that appears
in the polarisation operator is then formed as Eq. (136). Note
that (V) = (VN~1) for the occupied core states, and (V')
(VN=1) — (V) for the excited states. In this method, we do
not calculate the hole-particle diagrams directly. We calculate
the Green’s function using the potential in Eq. (163), and use it
to form the polarisation operator. This corrected polarisation
operator includes the dominating hole-particle effects.

We may include the “corrected” polarisation operator in
place of the regular polarisation operator when calculating the
screened Coulomb line, as shown in Fig. 11. Inserting the cor-
rected polarisation loop, and the screened Coulomb lines into
the diagrams for the correlation potential, we obtain an expres-
sion for the all-order correlation potential as shown in Fig. 12.

9.3 Self-energy chaining

The “chaining” of the correlation potential (iteration of X) is
shown in Fig. 13. This is accounted for automatically by in-
cluding ¥ into the Hartree-Fock iterations for the valence or-
bital (correlation potential method, as described previously).
This is an important effect that includes terms with excitations
of the external valence electron, and is enhanced due to the
small energy denominator associated with this excitation. Be-
cause the Hartree-Fock equations (with X) are iterated until
self-consistancy is reached, the chaining is included to all-orders.

9.4 Effective screening for exchange term

In the all-orders method, the frequency integrations can no
longer be performed analytically. This is fine for the direct
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Figure 12: All-order correlation diagrams including the Coulomb
screening and hole-particle interaction.

potential, since it contains only a single integral (the frequency
integral inside the polarisation operator can be done analyti-
cally). The exchange potential, on the other hand, contains a
double integral over frequencies, which is numerically expensive.
The exchange contribution to the correlation potential is typ-
ically small compared to the direct potential, and the screening
is a small correction to this. Therefore, it seems reasonable to
approximately account for the screening in the exchange poten-
tial. This is done by introducing effective screening factors for
the Coulomb operator in the exchange potential: @ ~ fQ. In
practice, the Coulomb operator is expanded over multipolarities
Q~% . ¢* (Laplace expansion, as discussed previously), and a
different screening factor is used for each multipolarity:
7 (W) ~ fxd". (166)
Note that the frequency dependence of f has been neglected.
The screening factors are calculated by evaluating the direct
energy correction (for each k) with and without screening;:
fie = @IS ) / (0] S o). (167)
Then, the frequency integrals for the exchange term can be car-
ried out analytically, and the exchange potential may be cal-
culated by summation over a complete set of states in exact
analogy to the Goldstone case, just with the extra k-dependent
factors. This greatly improves the efficiency of the exchange
part of the calculation, while still maintaining good accuracy.
The hole-particle interaction is not included in ¥ for calcula-
tion of fi (hole-particle effect enters at third-order in the direct
diagrams, but only at fourth-order in exchange). However, this
means the hole-particle effect is not included into the exchange
diagrams at all, which in certain cases may be important. The
screening effect is also taken into account approximately, which
may also be important in some cases.

10 Structure radiation + renormalisation: Correla-

tion corrections to matrix elements?*

By using Brueckner orbitals (correlation potential method) to
compute matrix elements and including core polarisation, the
dominating correlation corrections to matrix elements are in-
cluded automatically. However, effects that involve terms where
the external field acts inside the correlation diagrams — known
as structure radiation — cannot be included into the correlation
potential method, and must be considered separately [23, 31].

24Tmplemented in: /src/MBPT/StructureRad.hpp

——L— + > +

Figure 13: Chaining of the correlation potential (self-energy); the
boxed ¥ refers to the sum of diagrams in Fig. 12.
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Figure 14: Correlation corrections to matrix elements: ¥ represents
the correlation potential, and the dashed line is interaction with ex-
ternal field. The first two diagrams are included when Brueckner
orbitals are used to compute the matrix elements; the third diagram,
called structure radiation, is not.

This is illustrated in Fig. 14. In total, there are 36 such dia-
grams; 9 for each of the four second-order diagrams in Fig. 5.
At the same level there enters another correction, known as
normalisation of states, that also cannot be included into the
correlation potential method. It arises due to the change of the
normalisation of the wavefunctions due to configuration mixing.
All these effects are suppressed compared to the Brueckner and
core-polarisation corrections (roughly) by the ratio of the core
excitation energy to that of the valence states.

Matrix elements of operator h (rank k) are written [23, 31]:

(w|h|v) + (w]ShSR ) + (w]ShAN™|v). (168)
The normalisation contributions can be expressed
rm _1
(wl|or~ ™ [v) = —={wl|hl[v) (No + No) , (169)
where (using the short-hand ¢;; = ¢; +¢;)
521)amn 6Evnab
N, = , 170
(;;Lgua_gmn—i—;gvn_gab ( )
with
1 QL 'kW#‘ ik
52 k — . vt) v . (171)
vi ZH: (1] ] ( Evi = Ejk

Note that 0% are just individual contributions to the second-
order energy shift, Eq. (112); see Ref. [23] for discussion.

The structure radiation terms are more complicated. Fol-
lowing Ref. [32], they can be broken into three groups of 12
diagrams: “top” (T'), “bottom” (B), and “centre” (C):

(wll6n™%Jv) = (|| T||v) + (w]| Bl[v) + (w]|C][v).

Two examples are shown in Fig. 15. Expressions for these terms
were presented in Ref. [32]:

(al[Allr) T, v

(wlT]je) = 3 L e, (172)
T a k
<’LUHB||’U> — Z < ||h|| >Bwavr7 (173)

Er —Eq — W

ar

(w]|Cllo) = = (Blhlla)Criguy — Y (rlIAlIN) DYy (174)

ab m

where w is the transition frequency, a,b,c, ... are states in the
core (holes), n,m,r, ... are virtual excited states, and w,v are
valence states. For diagonal matrix elements T'= B.
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w

Figure 15: Example structure radiation diagrams, showing a “cen-
tre” (left) and “top” (right) diagram.

The T* terms are written as T =T + T2 + T3 + T*, with:®

© A
1,k _ v+r+a+b+k JW U k rck erbanabc
Twrvc_ Z(_l) {)\/Izb}{)\ﬂd} Cwr — Eba
abuA
TQ,k — Z (71)wfc+k:+p, {U/ v k} mﬁacnmﬁzrn
wrve i ['u] rTcu Ern — Eva
—1)w—ctk+p WH  WH (175)
T3’k — Z ( ) {w v k} wneca "’ vnra
wree [,LL] rep Ewn — Eca
anp
A
4.k v+r+n+m+k JW U k reck Qgranvcnm
Twrvc - Z (71) {)\ I ’Il} {)\ I m} Enm — Eve .

mnp

(T* and T* each correspond to two diagrams; T2 and T each
correspond to four). The B terms are similar:

Bl = (=17 TE (176)
Finally, the centre C and D terms are:
Ck = Z ﬂ {’LU v k} (_1)w—c Wgnabwﬁncb
wavce ‘= [;U’] ca i (Ewn — 5ab)(5vn — {-Zbc)
k cak (_1)U+a+m+nQu W)\
—1 k {w v }{ } vmnc’’ wanm
! mnzp)\( ) H An A pm (Ewa - Enm)(fvc — gnm)
(177)
DE = Z ﬂ {U} v k‘} (_]—)wimW'LlulbrnWﬁbmn
o nbp [M] mrH (61"(7 - ng)(Evb - Emn)
(_1)v+r+a+bQ5bamW$'rab

=20 IR HR e

abpA (Ewr — €ab)(Evm — Eab)

Note that the formula for D* is the same as for C*, except with
the internal sums over core and excited states swapped (i.e.,
b <> a in the first term, and >, — >, in the second.)

The dominating uncertainty for these corrections comes from
completeness of the basis. In particular, the structure radiation
terms involve matrix elements of h between basis states (the
normalisation of states only contains matrix elements between
valence states). It is therefore a good test to perform the core-
polarisation calculations using both the TDHF (Sec. 6.3) and
diagram (Sec. 6.4) methods using the same basis as for structure
radiation, since the diagram RPA method also involves matrix
elements between basis states. If the TDHF and diagram core
polarisation calculations match, it is good indication that the
basis is sufficient to also describe the structure radiation.

11 Relativity beyond Dirac-Coulomb (Breit+QED)

The Dirac equation as presented in Eq. (49) accounts for
the relativistic motion of the electron in the Coulomb field

25Using notation €ij = €;+¢;, and e.g., ‘a’ short for j, in 6j symbols and
phase factors, e.g., (—1)%+? = (—1)Jat3v | while k, 4, A are multipolarities.
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Table 6: Breit and QED corrections to the removal energies of the
lowest s and p states of Cs, as calculated at the Hartree-Fock and
2@ levels (units: cm™'). First column (&) shows energy without
QED or Breit. The Breit corrections at the HF level agree exactly
with Derevianko [33].

6QED éBreit
e(x®) HF 1@ HF @ Ref. [33]
6512 324121 —16.0 —23.7 —32 29 2.6
Tsis  13023.0 —4.3 —5.2 -11 —0.1 0.3
6p1)2  20537.8 0.8 1.1 -75 —-73  —-T.1
D12 9710.0 0.3 04 —27 26  —25
6ps;2  19939.2 0.1 0.0 -29 —06 —0.8
D32 9520.5 0.0 0.0 -1.0 —04 —04

Table 8: Breit corrections to the E1 reduced matrix elements of
s and p states of Cs at the HF, RPA, and £ levels (units: ag).
Corrections at the HF level agree near-perfectly with Derevianko [33].

6 Breit

|E1] HF RPA  RPA+X®  Ref. [33]
6p1/a—6s12 4.387  0.0004  0.0000 —0.0008  —0.0010
Tp1/2—6s12  0.300  0.0018  0.0016 0.0017 0.0019
6ps/o—6s1,2 6.170  0.0008  0.0001  —0.0009  —0.0011
Tp3sa—6s1/2  0.606  0.0006  0.0003 0.0002 0.0005
Tpi/2-Tsi2 10.178 —0.0010 —0.0011  —0.0022  —0.0029
Tpss2-Tsi2 14.123  0.0008  0.0006 0.0004  —0.0013
Ts1/o—6p12  4.224  0.0046  0.0045 0.0045 0.0049
7s1/>6ps2,  6.471  0.0018  0.0018 0.0010 0.0016

Table 7: QED corrections to the electric dipole (E1) reduced matrix
elements of lowest s and p states of Cs at the HF, RPA, and £(®
levels (units: ap). First column shows E1 (absolute value) at the
RPA+X® level, without QED (or Breit).

5 QED

|E1| HF RPA  RPA+X®
6p1/o—6s12 43874  0.0033  0.0033 0.0035
Tp1ja—6s12 03001 —0.0025 —0.0024  —0.0023
6psja—6s1/2  6.1698  0.0048  0.0049 0.0052
Tpsja—6s1/2  0.6056 —0.0029 —0.0028  —0.0025
Tp1ja-Ts12  10.178 0.0069  0.0069 0.0072
Tpaja—Ts1/2  14.123 0.0099  0.0099 0.0103
Ts1/26pij2  4.2241 —0.0046 —0.0044  —0.0045
7s1/2-6ps/2  6.4705 —0.0058 —0.0056  —0.0054

of the nucleus, however, it treats the Coulomb field classi-
cally, and treats the electron-electron Coulomb repulsion non-
relativistically (see, e.g., Ref. [3]). For high-accuracy calcula-
tions, and particularly for atoms with large Z, corrections due
to the missing relativistic effects become important (~0.1-1%).
The two corrections considered here are the Breit interaction,
which contains the dominating relativistic corrections to the
electron-electron Coulomb interaction, and the radiative quan-
tum electrodynamics (QED) corrections, which are accounted
for via the Ginges-Flambaum radiative potential method.

Our Breit corrections are compared against those calculated
by Derevianko in Ref. [33]. There, it was demonstrated that the
interplay between the Breit effects and correlations were crucial
— even changing the sign of the Breit contribution in many cases.
Our Breit calculations agree perfectly with those of Ref. [33] at
the HF level, and agree very well including correlations. The
interplay between the QED and correlation corrections turns out
also to be important [34, 35], so for high-accuracy calculations,
the Breit and QED effects must be included together including
correlations.

Tables 6, 7, and 8 show the QED and Breit corrections to the
lowest s and p energies and E1 matrix elements at various levels
of approximation. The combination of correlation corrections
with the Breit and QED effects are important.

11.1 Breit interaction?®

This section mostly follows Ref. [2]; see also [33, 36, 37]. The
Breit Hamiltonian accounts for magnetic interactions between
electrons (also known as the Gaunt interaction), and retardation
effects (see, e.g., [3]). It leads to a correction to the electron-

26Implemented in: /src/HF /Breit.hpp
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electron Coulomb term in the many-body Hamiltonian (49):
1 1 -
YooY (i),
i N\

i i
where, in the limit of zero frequency, the two-particle Breit
Hamiltonian is

(178)

B G0y (o ij) (e - Rij)
u 27 ’
)

(179)

Frequency-dependent effects can be neglected in most situations,
see, e.g., discussion in Refs. [2, 3].

We follow Ref. [37], and express the angular reduction for the
two-particle Breit integrals in the same way as for the Coulomb
interaction: .

Babea = {ablbled) = Apy,eqBlyea

where A’;bcd is the same angular coefficient as in the regular

Coulomb case [see Eq. (34) in the appendix]. The “reduced”

Breit integrals, B, are analogous to the Q¥ integrals of the

Coulomb interaction, though do not contain all the same sym-

metries. Our definition of B* differs by a factor of £1 compared

to Ref. [37], in order to be consistent with our Q* definition.
In analogy with the Coulomb case, we express this as

k k+|ja—J k ik k k k
Babcd = (_1) o=l |:Caccbd (mabcd + Oabed + pabcd)

k ko .k
+ C—a,cc—b,dnabcd} ’ (180)
where m,n are due to the magnetic (Gaunt) effects, o,p are
due to retardation, and C*, = (—ky||C¥||kqa). The lower-case

integrals (e.g., m¥, ;) may be called the Breit radial integrals,
and are somewhat analogous to R’;bcd, though they also depend
on angular quantum numbers x (but not projections). The B*
integrals have similar symmetries as the W* Coulomb integrals:

k k k k
Babcd = Bbadc = Bcdab = Bdcba> (181)
with the extra symmetry:
k la+lc+k k
Bcbad = (_1) et +lBabcd (182)

(the m, o, p parts are anti-symmetric under a > ¢, while the n
is symmetric). Note also the the n part has the opposite parity
selection rule to the other terms, and to the regular Coulomb
integrals.

The complete equations are substantially more cumbersome
than for the Coulomb case. We follow Ref. [37] and introduce:

Pfi(r) = %Xij(r) —Yi;(r) = —Pji(r)
Ay . (183)
ij(T) = b+ 1Xij(7°) + Yij(” = ji(r)v
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where A;; = Kk — Ky,
Xij(r) = F{0.F; = fi(r)g;(r) + gi(r) £;(r) = X;s (184)
Yij(T) = FiTéij = fl(r)g] (T) - gi(r>fj (7“) = —Y};,
and
. 0 1 N 0o 1
(0. a= (5 ) )

) = [ a0 ar (186)
0
br(r) = / G"Yi(r") dr’, (187)
0
with
A 71 lec [e’e] k
g (’/’1) = / FXM(’/‘Q) d’r'g +/ k:+1 Xl] (T‘g)d’/‘g
0 1 T1
g% (r1) + 9% ’“(7"1)- (188)
We also introduce notation for the integrals:
stiea = [ [ drdra g Q8 (r)Qba(r2)
thsea = [ [ arsdra B Ptra)
Ugped = // dr1dry ¢" Xae(r1) Xpa(r2) (189)

}Hl) y (Tl)Pbd(7"2)

abcd —/ d’"l/ d'r'2 1
+/ d’f’l/ dT2 (qkilf
0 T1

k +1 is the (radial) two-body Coulomb operator.

" PL.(r1)Qpa(r2),

where ¢*
With these deﬁnltlons we can write [2, 37]:

k+1 k

Mg = %13 Subed mtlébcd

k (Ka + k) (Kb + Ka)

=— 1

Nabed k‘(k‘ ¥ 1) abed ( 90)
R UL ) S S S

abed T (2k 4+ 1)(2k +3) 7 (2k +1)(2k — 1) **?

koo k(k+1) 4
Pabed = —

2(2k + 1) abed:

For including Breit into HF or TDHF equations, it is con-
venient to define the effective one-body Breit operators, which
may be called “Breit screening functions” in analogy with y¥,(r).
For example,

(afs(e9)c) = / FI (1)) (1) Fu(r) dr = sty

k(ac)

The same definitions may be used to define m,; ’, etc. With

19

these, we can finally write:

k(ac Abd k+1 k+1 Aa,c
spi = (k+1gb;_ +bya k+191+0y
k(ac Abd - — Aac
tay"* = (nglfd f— by 1) [ 7 O — Oy
u’;c(laC) = gllfd(r) 9:0
k(ac Apd; 0k-1 0,k+1 0,k—1 0,k+1 Age
b‘g = (k[gbd 7gbd+ ] = by + by ’ > {m91+9y]

Apg
k+1

ez—oy}.

(191)

(&

Inclusion of the Breit Hamiltonian into the Hartree-Fock
equations [33] leads to a correction to the HF potential (52):

A
oo,k—1 oo,k+1 co,k—1 oco,k+1 a
[9pa ~ Gba +}+bbd —byg +) { kc

Virr — Viar + Bur. (192)
Inclusion into the Hartree-Fock and TDHF equations allows for
the inclusion of Breit effects into the calculations of atomic en-
ergies and wavefunctions. Since the Breit potential depends on
the core orbitals, an extra term now also appears in the TDHF
equations:

SV = 6Viar (0¢) + 6V (66), (193)

which in fact gives the dominant Breit correction to matrix el-
ements in many cases.

The Breit contribution to the Hartree-Fock potential correc-
tion can be found simply in analogy with Eq. (54):

BurF(r [ ZZ (Ch)? (my

(1b)+ ln( ))

(O )P By (r).
(194)

Note that the direct Breit contribution is zero; only the exchange
term survives. The equation for §V5(d¢) is not given explicitly
here, but can be found by making the similar substitution in
Eq. (102). Note that while no direct Breit term appears in the
HF equations, it does enter into §V3g.

Note that, at the moment, the Breit interaction cannot be
included into the electron Green’s function, required to com-
pute the all-orders correlation potential. Therefore, the Breit
effect must be computed only at the second order of MBPT.
(This is not a fundamental limitation, in theory Breit can be
included into the Green’s function, it just isn’t implemented as
of now). Further, we do not include the Breit correction to the
Coulomb interaction inside the MBPT diragrams; this affect is
very small [33]. It is, however, important to include the Breit
interaction into the Hamiltonian used to create the spline basis
states (which are used to construct the MBPT diagrams), since
these states must be orthogonal to the Hartree-Fock core.

11.2 Radiative QED corrections?”

Radiative QED corrections can be included into the wavefunc-
tions using the radiative potential method developed in Ref. [38],
including the (small) finite nuclear size corrections [34, 35]. In
this method, an effective potential, V;.q, is added to the Hamil-
tonian before the equations are solved. The potential can be
written as the sum of the Uehling (vacuum polarisation) and

27Functions defined in: /src/Physics/RadiativePotential.hpp
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Figure 16: Vacuum polarisation (left) and self-energy (right) dia-
grams. In the radiative potential method, the self-energy diagram is
replaced with an effective local potential [38].

self-energy potentials, see Fig. 16. The self-energy potential it-
self is written as the sum of the high- and low-frequency electric
contributions, and the magnetic contribution:

Vead(r) = Vuen(r) + Vi (r) + Vig(r) + Vig e (r).

Including this potential into the Hartree-Fock equations (in-
stead of adding it as a subsequent perturbation) gives an im-
portant contribution (core relaxation), especially for states with
[ > 0. The first three (electric) terms on the RHS of Eq. (195),

Ve (r) = Vien(r) + Vdp(r) + Vg (r),

are simple scalar terms, and can be included into the calcula-
tions simply (e.g., by adding them to the nuclear potential).
The final (magnetic) term, which can be expressed as [35]

Vo #(r) = i(y - n)H™ 2 (r),

leads to off-diagonal terms in the Hamiltonian. Together, they
can be included via additions to the radial derivative (12):

1 <(_—

(195)

(196)

(197)

(e =V 4V 422
(ck/r — H™?8)

ck/r + H™?8)
(e -V +Ve

) F. (198)

The sign convention here for Vi,q (i.e., with H— H-— Viad) is
from Ref. [38].

Detailed expressions for the individual contributions to V.q
are given in Refs. [34, 35, 38]2® — they involve some rather nasty
integrals that must be evaluated carefully. For the Uehling po-
tential (with p = r/)&c and p, = 75 /X:)* we have:

\/7

Vien(r (262 +1) e Guen(r,t), (199)

37'('7“

where 7y is the nuclear radius (ry = \/5/37rrms) and

C7'Ueh (Ta t) =
3(2tpy) "? [(2tpn) cosh(2tp,) — sinh(2tp,,)] r>r,
3 (2tpn) 2 e2te [2tp — e72Pn (1 + 2tpy,) sinh(2tp)]  r < 7.
(200)
Note that Guyen — 1 as ry — 0.
For the electric self-energy potential, we have
Vig(r) = =Bi(Z)Z*a’ Fgg r) (201)

where, with £(z) = (z + 1)e™

3

l —
Bl =57

/OTN v [€(Z]r — ")) = &(Z(r + ")) dr’.
(202)

28Note: there is a small typo in Eq. (14) of Ref. [35] (
and r > ry terms should be swapped.
29X, is electron (reduced) Compton wavelength. Atomic units: X. = a.

step
hlgh) the r < TN
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Note that Fig(r) = e 47/%2 as ry — 0. And:

Az )Za

V) = a2 2 [ aen,2)

X [eimpGUeh (’I’, t) - I2 (T7 ta Z)} ) (203)

where Gyey is the same as from the Uehling potential,

t21— 1 {7512 -
+ (1 - 212) [m(t? —1)+4In ((Za)_l - ;)} } (204)

3ra

Il(rataz) =

3
2

and

I(rt,7) = i [El (I = #'| + ra)2t/xc) —

27“?\/ 0
By ([r+ 7 + ral2t/3) } dr',  (205)

Here, A
Note

E, is the exponential integral, and r4 = 0.07Z2%a3.
and B are order-1 fitting factors, taken from Ref. [35].
that Iy — e 2%ry/[r/ap + 4] as ry — 0.

Finally for the magnetic form factor:

Za?

A8 () = 47r?

[t
/ t2Vt2 -1
x [(1+2tn)e 2P Giag(r,t) —

where 7 = max(p, pn), x = min(p, p,,), and

(x/pn)?], (206)

3
(2tpn)?
Note that Gmag — 1 as R, — 0.

(ezt(p_") [2¢x cosh(2tx) — sinh(2¢y)] ) (207)

mag —

12 Configuration Interaction

In this section, we detail the method used for multi-valence elec-
tron atoms. We focus on the case of two-valence systems, but
the general method works for any system. We use the com-
bined Configuration Interaction with Many-Body Perturbation
Theory (CI+MBPT) method, which was first introduced in
Ref. [39]; see also Refs. [14, 39-43].

In the CI+MBPT method, valence-valence correlations are
treated with high accuracy using the CI method, and core-
valence correlations are treated using perturbation theory. Since
the core excitation energies are much larger than valence excita-
tions, this method has the potential to be highly accurate while
maintaining good numerical efficiency.

12.1 CI Hamiltonian

We may first break the total Hamiltonian into parts contain-
ing only core-electron terms, valence electron terms (including
the valence-valence Coulomb interaction), and the core-valence
interaction potential:

H=H,+H, + Vi (208)

The core-valence interaction is obviously not small. However,
the dominant part of this interaction can be described by the
Hartree-Fock potential due to the N — M core electrons:

M
Vey = VI (ry) 46V,

i

(209)
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where dV is (assumed to be) a small correction, which we shall
treat perturbatively. Excluding the perturbation, we thus define
the standard CI Hamiltonian for the valence space:

—1
Zm,- )

i<j

M
Her = Hey+ He =Y W (r) + (210)

where the sums extend over only the electrons in the valence
subspace (the “active” CI space).

For accurate calculations, however, core-valence correlations
must be taken into account. This may be done by an expansion
of the perturbation potential Heg = Her + 0V

SV A > B )+ > B2 (1),

i<j

(211)

where X! is the (non-local) one-body correlation potential which
accounts for the core-valence interactions, and X2 is the two-
body operator which accounts for the screening of the valence-
valence Coulomb interaction by the core electrons. These are to
be calculated using Many-Body Perturbation Theory; and will
be discussed below.

In the CI method, approximate valence-space wavefunc-
tions, W, are expanded over M-particle wavefunctions called
Configuration-State Functions (CSFs), v5:

W, J7 ) =Y el T, (212)
I

The CSFs are combinations of Slater-determinants and will be
discussed below. The CSFs are eigenfunctions of J2, J,, and
parity (7). Then, for each J™ symmetry, the energies and
wavefunctions (expansion coefficients) are found by solving the
Schrédinger equation, which for a finite set of Nogp CSFs, is
cast to an NZ gy eigenvalue problem:

> ci{I|Heg|J) = Eep,
J

(213)

where N¢gr is the number of CSFs in the expansion (212). (We
generally don’t need to fully solve the eigenvalue problem, there
are efficient methods to approximately find just the lowest few
eigenvalues.) The accuracy of the method is controlled by where
the CI expansion is truncated (i.e., which CSFs we include in
the space), and by how many electron shells are considered to
be in the “valence” space.

The CSFs are themselves formed from combinations of M-
particle Slater determinants®® (sometimes called “projections”):

3. (214)

1,JJ.) = dimy 1, T T2, {ma,ma, .
{m}

These have definite angular momentum projections, m;, for
each of the M electrons that form the CSF; the set of ms have
>oimi=Jzand 3o de} = 1. Typically, CSFs ® are formed
in the stretched state with J, = J.

For two-particle states, dy,,) are just the Clebsch-Gordon co-
efficients. For example, for configuration {n«, n’x’} (which has
parity 7 = (~1)1+),

|I,J"J) = nz Ca gt L JT T {nsm, n'k'm'}),  (215)
m

30If hole excitations are included into the CI space, the CSFs may be
M + 2N;, particle functions, where N}, is the number of hole-excitations
included. Hole excitations are not included in the CI expansion in AMPSCI,
rather they are accounted for using MBPT.
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where m’ = J —m. The extra factor 7 is required when the two
electrons in the CSF are in the same (n, k) orbital:
1/v/2 identical
n= 1

. (216)
otherwise

and accounts for the fact that both cannot occupy the same m.
The single-particle basis states may be formed in a number
of ways. One choice is to use the set of eigenstates of the same
HF potential that appears in the CI (210). In this choice, the
Hartree-Fock potential is due to the N —M core electrons, and so
is called the V=M approximation. The benefit of this method
is that the one-particle states are eigenstates of the one-particle
part of the CI Hamiltonian, and the many-body corrections be-
come simpler (as discussed below). The downside, however,
is that the the potential seen by the one-electron states is far
from realistic, meaning a larger number of CSF's are typically
required in the expansion. For few-valence systems, this is often
the best compromise. For many-valence systems, the CI part of
the problem becomes more important (compared to the MBPT
part), and so a more realistic initial potential should be used.

12.2 Angular separation

Since for two-particle CSFs, the angular linking the CSF to the
Slater determinants in Eq. (214) are just the Clebsch-Gordon
coefficients, the angular separation is particularly simple. Here,
I use the short-hand notation |V) for a two-electron CSF

VY =1ow D Cl s g oW},
{m}

(and similarly for | X) = ...|[{zy})).

The first thing is to evaluate the matrix elements of the CI
Hamiltonian Eq. (210) between two CSFs of the same J™ sym-
metry (ignoring the MBPT part for now). Considering the one-
body part of the Hamiltonian first (H(l;), we have for the diag-
onal terms:

(217)

(VIHE|V) = b, + b

ww?

(218)

or more generally:
(XTHSIV) = ey | P + B0y
— (1) (R B+ B 0) |- (219)

Note that, in the VN—M approximation, h}j = ¢;0;;. For the

two-body part HZ;), we have:

i
(X[HE|V) = Neyow Z(‘UIH}HC x
k

(ot eretn - ahes.) e

(Note, the formula looks cleaner if this is written terms of the
anti-symmetrised W integral, though it is less efficient to com-
pute that way). To include the Breit interaction, we simply
replace QF — Q" + B* (180). By including Breit in the HF po-
tential, the Breit contribution to H; is included automatically.

12.3 External fields and matrix elements

For a tensor operator, th , we can write the reduced matrix
element as a sum over CSF's:

(WA|TH||Wp) =) exev(X||TH|V).
X,V

(221)



ampsci: Method

B. M. Roberts — July 2024

o
el
ks

Figure 17: Matrix elements of the ¥.? operator — screening of the
valence-space Coulomb interaction by core electrons.

For two-particle states, the reduced matrix elements between
CSF's can be expressed [using the notation of (217)]

(XNTHV) = (=1 naynow v [Tx, Jv]x

[(_1)m+w+v XV,

F(=1)%te {X \%4 k} t;;w(;yv

w T v

F(—1)XHVH {X v k} t§v5acw

VY w

(1t O b .

W (222)

| S|

Core polarisation (RPA) can be taken into account in the usual
way, by modifying the single-particle matrix elements.

12.4 CI4+MBPT

The §V terms in Eq. (211) correct the one- and two-particle
parts of the CI Hamiltonian (210) respectively. The one-particle

»! . operator is the same one that appears for one-valence sys-

tems, shown in Fig. 5, though we require the off-diagonal ele-
ments:

GJvamnGnmaw GvnabJbanw

1
va -
amn

(223)

Ewa — Emn Ewn — €ab

abn

We have written the energy denominators directly as implied
by the Goldstone diagrams (RS perturbation theory). We shall
return to the question of the energy denominators soon. The
angular separation is exactly the same as in Eq. (112). We have
evaluate the matrix elements directly like this, or we may form
the correlation potential matrix as in Sec 7.1. All-orders screen-
ing and hole-particle interaction can also be simply included into
¥! by using the all-order correlation potential as described in
Sec. 9.

The two-body Y2 operator corresponds to screening of the
valence-valence Coulomb interaction by the core electrons, as
shown in Fig. 17. The diagrams can be evaluated:

Efijy g'unxagawny — GunazJawny
€xa — Eun
+ gvazngnway — YuanzYnway (224)
€ya — Ewn
. GvnayYawzn _ GvanyInwza GvwabTabzy
6ya — Eun €xa — Ewn Eab — Evw .

In the standard Rayleigh-Schrodinger (RS) perturbation the-
ory (as the above energy denominators are presented), the ¥ ma-
trix elements, and hence the CI matrix, becomes non-symmetric.
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In the Brillouin-Wigner (BW) formalism, the energy denomina-
tors instead depend on the whole energy of the atom. This
becomes Fcore + Fyal, and the core part cancels. So the energy
denominators depend on the valence configuration. A good ap-
proximation is to use the single-particle energy of the leading
configuration.

For ', this is as simple as replacing the valence energy
with the energy of the lowest valence state of the given single-
particle symmetry e, — &.,. For %2, we may also use this
approximation for all of the valence states. Or, we can make
the stronger approximation that the initial/final state ener-
gies are roughly the same (valid since the core-valence excita-
tion energy is large compared to the valence excitation energy),
Ev — Ex R Ey — Ey & 0.

The correlation diagrams have the same angular decomposi-
tion as the Coulomb integrals:

§ Avwwy PWTY?

where S* is independent of magnetic quantum numbers. Note
that S* has different selection rules and fewer symmetries than
QF: S* The explicit formulas can be constructed from:

Z Avw:m,/

(225)

vw:z:'t/

k k
g'una:agawny anwaWawny’

(226)

and

)v+w+z+y+a b X

E Auwxy

;M
0 R b Qs @y (227)

vwabGabzy =

A Appendix

Some useful equations and definitions are given here; see also Refs. [1,
2,5,8,9, 44, 45]. Note that notation differs between all these sources,
I have introduced some notation not found in the above.

A.1 Many-body wavefunction (Slater determinant)

For a system of non-interaction particles, the many-body wavefunc-
tion may be written as a product state (independent particle picture).
If each single-particle wavefunction 1 obeys fn/; = e1p, it clear, e.g.,
that a two-body product wavefunction ¥4 (71)¥s(r2) satisfies the total
Hamiltonian:

[R(r1) + h(r2)] Ya(r1)p(r2) =

This remains true for states where each particle interacts with a
common field (e.g., h = ho + V(r)), as is the basis for mean-field
approximations such as Hartree-Fock. For Fermions, the many-body
wavefunction must be anti-symmetric under the exchange of any two
particles, and must not allow any two particles to occupy the same
state. A two-particle state which satisfies this may be written

[ea + €] Ya(r1) P (r2)- (A1)

1
Wap(r1,m2) = —= [Wa(r1)¥s(r2) — Yu(r1)va(r2)] - (A.2)
V2
More generally, an N-body wavefunction may be written in the form
of a determinant, known as a Slater determinant,

Ya(r1)  Ya(r2) Ya(rn)
1 |[¥e(r)  e(r2) VYo(ry
\Ijab...n(rlvr27"-7TN) = W : : : (AS)
Yn(r1)  Pn(r2) Yn(rn)
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which is an eigenstate of the Hamiltonian

H= Zh(n).

Note that the determinant form encodes the Fermion antisymmetry
and exclusion principal.

The introduction of explicit interactions between particles [e.g.,
introducing V' (r1,r2) into (A.1)] means the wavefunction cannot be
written exactly as a single Slater determinant. However, if the inter-
action terms can be made to be small (e.g., by good choice of mean
field), they may be treated perturbatively. The many-body wavefunc-
tion can be written as an expansion over Slater-determinant states
(many-body perturbation theory); see, e.g., [1, 2]. We will typically
refer to the single-particle wavefunctions, v, that make up the total
N-body Slater determinant, W, as orbitals.

A.2 Matrix elements for many-body states

Let F' and G be one- and two-particle operators
F:Zf(rl) ) G:Zg(riarj)a
i

i<j
where f(r;) acts on the ith electron; g(r;,r;) acts on the pair of
electrons {i,j}. Here, I use the short-hand notation from Ref. [1]:

(A.4)

|7) = alai|®),

with ¢, j denoting occupied states (core and valence), and m, n,
denoting unoccupied virtual excited states. |®) is a many-body
Slater determinant wavefunction including the Hartree-Fock core and
the occupied valence states (e.g., we may have |®) = af|Our)), see
Ref. [1]. Then, we have for diagonal matrix elements:

> (ilfli) = Z fii

i

= ((ijlgli) —

i<j

(| F|D) =

A5
(@G|2) (42)

= (gijis — Giiis);

i<j

(ilglig))

for matrix elements between states that differ by a single orbital:

(@F1F1®) = (nlfli) = fus
(@F1c1®) = 3 (njlalid) — (jnlgli)) = > (gnss = gomis). O

and for matrix elements between states that differ by two orbitals:

(@3 [F|®) =0

(@7 |G|®) = (nmlglij) — (A7)

(mn|g\w> = Gnmij — Gmnij-

A.3 Wigner-Eckhardt theorem

For irreducible (spherical) tensor operator T,f (¢ component of tensor
operator of rank k), the Wigner-Eckhardt theorem allows us to define
a reduced matriz element via:

(naﬁama\Tﬂnbm,mb)

Ja—Ma ja k jb
(1) (o o

) (kT moms),  (A.8)

where the reduced matrix element (||7%||) does not depend on mag-
netic quantum numbers, and (:::) is a 3j-symbol [8]. The reduced
matrix elements have symmetry relation:

GITH15") = (=077 G NT 5) (A.9)
and obey summation relation:
D (nakama|Ty Inprems) [ = |(nakal T"|Insrs)|>. (A.10)

Ma,Mp,q
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A.4 Angular identities

Clebsch-Gordon coefficients notation:

J1 Jj2+M / J1 o J2
(m1 mo —M)
= C(j1,j2, J;m1, ma, M)
OJM

Jjimai,jema:

(jim1, jama| I M) =

[jrje; IM) = > (jima, jama| TM)|jima)|j2ms).

mi,m2

Useful identities

[]b] R(n).bab-

g Jabab =
my

Z Gijkl Jikji = Z M (ch, CHR:L]M)
My ikl
= Z
m

z;kl

)H+>\+1Cu CM C C

Z Gijkl klji =

Mgkl

> (-1

J72N

Ji Jk B
X y ] }Ritjkle]lk

Ji Ji A
,_Z[

zgkl zykl
2 : A 2 : kpX
AmnrsArsz] ArnanA»mnr-szJ
mrms
_ k+p+X 2k kxp
Z Acnz’r mrcj 72( 1) Amnlemjcrzn7
myme k

where

AkLL)\ = (_1)m+n+r+s+i+j+1[k] {’Klli f} {’f)\l ,l]l IZ} ’

. Ji J2 J J1 ]2 i\ _
2(2] +1) (m1 ma m) (ml mh m) Oy mf; Omyms

jm
. . . . . .
. Jr g2 7 Jr J2 ] —
S i+ (20 (m1 E m,) = 8,6t
mi1mso

_ JE ey (V)1 L
/i/l/mlifleLM dQ = A (O 0 0) m m M
l
. 2+1 2 _
S =2 S
myp=— m

(¥ = (-1 VT (5 % §)

= ‘T‘lC’; = |r|,/4§Y1q; ro = 2.

(nisl|r=|n's") = (nelrin’s") (K]1C" ||").

(J'IF'||T*||JIF)

I

= (C1)F T { F 5} T )

where ([a] = 2a + 1).

(A.11)

(A.12)
(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)
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From Ch. 13 of Ref. [8]:

Glsl UGSy = s (1 GITING + ) {jz o }
. o
GUsllsIIF sy = burde (=LY TG TTs( + 1 {Jslz?s } '
(A.29)
A 6-j symbol
123
{123 (A.30)
is non-zero only if each of the triads obey triangle inequality,
A(1,2,3), A(3,4,5), A(2,4,6), A(5,6,1). (A.31)
A.5 Useful definitions/identities
Dirac matrices
Dirac matrices are defined by the relation:
{7 =2¢"" (A.32)
In the Dirac representation, with ® = iv%y'y2~2, they are:
o_ (1 0 a 0 o 5 (0 1
v = (0 71>, 7 = <7O_a 0), v = (1 0)' (A.33)
Pauli spin matrices
0 1 0 —i 1 0
g = (1 0) , Oy = (z 0> , 0z = (0 _1) (A.34)
00 = ieijkak +4 (57;]' s [O’i,Jj} = 2’i6i]'k0k (A35)
(0-a)(oc-b)=a-b+io-(axb) (A.36)
1
(P =i (v + ) 0 (A0
(0 1)Qem = —Q_w,m. (A.38)
Dirac orbitals (spherical potential, Dirac basis)
1 frw (1) Qem (1)
nkm i 5 A.
burnr) = 1 (i S ) (A.39)
Qﬂm(n) = Z <la m — o, 1/21 U|.j7 m> le»mfo(n) Xo (A40)
o=+1/2
_1)i—i-1/2 n+1/2—my . 0,
(R 00)
\/ %H,m+l/2(97¢)

where j and [ are the total and orbital angular momentum, with
k=10—-7254+1), Il=|s+1/2|-1/2, j=|s|l—1/2. (A42)

Note that strictly parity (—1)l, not [, is the good quantum number.
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