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This is a brief description of the methods used in the code for atomic structure calculations (for single-valence systems), and has
definitions for all the relevant equations. The code is available online: github.com/benroberts999/ampsci; see the “readme” file for
compiling/usage instructions. Some basic documentation for the code is also available: ampsci.dev. This is not meant as a complete
description of the physics, but references are provided to more detailed descriptions.
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1 Radial Dirac equation

An N -electron atomic wavefunction, Ψ, obeys the Schrödinger
equation HΨ = EΨ, with

H =

N∑
i

h0(ri) +
∑
i<j

e2

rij
, (1)

where h0 is the single-particle Hamiltonian (including only the
nuclear potential), and the second term accounts for electron-
electron Coulomb interaction, with rij ≡ |ri − rj |. We can
re-write this as

H = H0 + δV =

N∑
i

[h0(ri) + u(ri)] + δV, (2)

where

δV =
∑
i<j

1

rij
−
∑
i

u(ri).

The assumption is that u is a good approximation to interaction
term, allowing us to treat δV perturbatively. The formation of
the mean-field potential u, and how to treat δV corrections, will
be the discussed in the later sections. Since the mean-field po-
tential u contains no two-particle terms (i.e., it is a function of
single-electron coordinates only), the solutions to the approxi-
mate Hamiltonian H0Ψ0 = E0Ψ0 may be expressed as Slater
determinants, which are formed from eigenstates of the single-
particle Hamiltonian – see Appendix A.1, and Refs. [1, 2].

For heavy atoms, relativistic effects are crucial, so we must
begin with the relativistic Dirac equation:

(hD − ε)ϕ(r) = 0, (3)

where hD is the Dirac Hamiltonian (see, e.g., Ref. [3]):

hD = cα · p+ c2(β − 1) + V̂ . (4)

Here, the potential V̂ contains the nuclear and mean-field po-
tentials, and α = γ0γ and β = γ0 are Dirac matrices.1 Note
that we have subtracted the electron rest energy, so the total
relativistic energy is E = ε + c2. For bound states, ϕ → 0 as
r → ∞ and ϕ is regular everywhere and thus normalisable. The
set of solutions {ϕi} (including the negative energy states) to
(3) form a complete orthogonal set/basis. We use the standard
normalisation choice, so that ⟨ϕi|ϕj⟩ = δij .

1We use atomic units: ℏ = me = e = 4πϵ0 = 1, c = 1/α ≈ 137 (e > 0)

For spherically symmetric potentials V̂ , we can express the
four-component single-particle orbitals in the form2,3:

ϕnκm(r) =
1

r

(
fnκ(r) Ωκm(n)
ignκ(r) Ω−κ,m(n)

)
, (5)

where n is the principle quantum number, κ = (l− j)(2j+1) is
the Dirac quantum number, m = jz is the projection of j = l+s
(total electron angular momentum) onto the quantisation axis,
and Ω is a (two-component) spherical spinor,

Ωκm ≡
∑

sz=±1/2

⟨l,m− sz, 1/2, sz|j,m⟩Yl,m−sz (n)χsz , (6)

with ⟨j1m1j2m2|JM⟩ a Clebsch-Gordon coefficient, Ylm a spher-
ical harmonic, n = r/r, and χsz is a spin eigenstate (sz =
±1/2). Even for non-symmetric potentials, we can expand the
solutions in terms of orbitals of the form (5).
Then, we can define the radial Dirac equation in the form:

(hr − ε)Fnκ = 0, (7)

where we defined the radial spinor,4

Fnκ =

(
fnκ(r)
gnκ(r)

)
, (8)

and radial Hamiltonian,

hr =

(
V̂ c(κr − ∂r)

c(κr + ∂r) V̂ − 2c2

)
. (9)

The 3D (spherical) Hamiltonian can also be expressed in this

form by replacing κ in (9) with −k̂ (top right) and k̂ (bottom

left), where k̂ ≡ −1− σ · l, and k̂Ωκm = κΩκm. I will suppress
the r subscript and use (h− ε)F = 0 and (h− ε)ϕ = 0 inter-
changeably, since there is no risk of confusion. The terms in ϕ
are orthonormal as:

(nκ|n′κ) ≡
∫
F †
nκFn′κ dr =

∫
(fnκfn′κ + gnκgn′κ) dr = δn′n

⟨κm|κ′m′⟩ ≡
∫

Ω†
κmΩκ′m′ dΩ = δκ′κδm′m. (10)

1.1 Nuclear potential5

For a point-like nucleus, Vnuc = −Z/r; in reality, the nuclear
charge is distributed across the finite-size nucleus. To form Vnuc,
we assume the nuclear charge follows a Fermi distribution,

ρ(r) = ρ0 (1 + exp[(r − c)/a])
−1
, (11)

where ρ0 is a normalisation factor (
∫
ρdV = Z), c is the half-

density radius, and a is defined via the 90–10% density fall-off
t ≡ 4a ln 3 (known as the “skin thickness”), which we take to
be t = 2.3 fm for all heavy isotopes. The half-density radius is

2We use the Dirac representation; see Appendix A.5.
3Our notation differs from some other places: compared to Ref. [3] we

have f ↔ g; compared to [2] we have fhere = PJohnson, ghere = −QJohnson;
compared to Ref. [4] we have ghere = αgDzuba; and compared to Ref. [5]
we have fhere = gSapirstein and ghere = −fSapirstein.

4Radial spinor defined in: /src/Wavefunction/DiracSpinor.hpp
5Nuclear potentials defined in: /src/Potentials/NuclearPotentials.hpp
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related to a and rrms, the root-mean-square charge radius, as
c =

√
(5r2rms − 7π2a2)/3. Then, Vnuc is obtained numerically

from (11) using Gauss’ law. The code also allows you to assume
a spherical nucleus (mainly used for testing). The root-mean-
square charge radii are known to reasonably high precision for
most isotopes of interest [6], and reasonable interpolations can
be made for the rest.

2 Numerical solution to the Dirac equation6

2.1 Bound-state solution to local Dirac equation

From Eqs. (7) and (9), we can express the radial derivative as:

∂F

∂r
=

1

c

(
−c κ/r (ε− V̂ + 2c2)

−(ε− V̂ ) c κ/r

)
F, (12)

which has the familiar form of an ODE. Very roughly, we can
solve an ODE numerically by stepping forward if we know the
derivative of a function and the value of the function at some
previous point: F (r + δr) ≈ F (r) + ∂rFδr. Multi-step meth-
ods approximate the value of the derivative along the interval
(r, r + δr) with greater accuracy by using several points in the
estimation. We use an M -step Adams-Moulton method, which,
for a general DE of the form ∂rFn = yn, has the form

Fn+M = Fn+M−1 + δr

M∑
i=0

bi yn+i, (13)

where yn ≡ y(rn), and bj are numerical coefficients. Since the
derivative Eq. (12) can be written as a matrix equation, we can
solve this equation for Fn+M algebraically:

Fn+M =

[1− δr bMDn+M ]
−1

(
Fn+M−1 + δr

M−1∑
i=0

biDn+iFn+i

)
. (14)

Therefore, we may find the value of the function at n+M grid-
point, provided M − 1 previous points are known. These initial
points are determined by solving the asymptotic form of the
Dirac equation analytically accounting for the boundary con-
ditions (see Ref. [2] for details), noting that for neutral atoms
V (r) ≈ −Z/r for small r, and ≈ −1/r for large r.
Equation (12) has solutions for any given ε. We are interested

in the specific bound-state solutions [F → 0 as r → ∞, and
F (0) = 0], which occur for specific values of ε. To solve the
bound-state (eigenvalue) problem, an initial ε is guessed, and
the DE is solved using the multi-step method. Then, small
adjustments are made to ε until (a) we have the correct state
(nκ) determined by the number of nodes of the orbital (n− l−
1) [3], and (b) we have the correct boundary conditions.

It is common to expand the orbital around r = 0 to start the
procedure, and then adjust the energy until F → 0 at infinity.
A more numerically stable approach is to solve the DE twice,
once starting from r = 0, and once from r = ∞ [2]. These
two solutions are stepped inwards toward some central point,
where the two solutions are joined – one of the two solutions is
re-scaled so that f0 = f∞ at the defined point. Small energy
adjustments are made until the lower g components also match
at this point (this ensures the derivatives match, and the join
is smooth). In our case, the two solutions are not joined at
a single point, but are instead “meshed” across a few (∼ 10)

6Functions to solve Dirac equation defined in: /src/DiracODE/
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Figure 1: Hydrogen 1s orbital [f(r)], as calculated at the first though
7th iteration. For this example, the initial energy guess was −0.3 au,
and converged to −0.500006566.. au to parts in 10−16 in 12 iterations.

points around the classical turning point, defined via V (rctp) =
ε. The meshing procedure acts to suppress numerical noise, and
makes the method more stable. This procedure typically allows
convergence of the energies to parts in 1016; see, e.g., Fig. 1.

Note that Eq. (12) does not determine the normalisation for
F , so the solutions must be normalised explicitly [Eq. (10)].
Further, the sign of F is also arbitrary from Eq. (12); we choose
f(r) to be positive as r → 0, as is standard.

Everywhere in the code, the fine structure constant is replaced
with: α → λα0 (in atomic units, α = 1/c), where α0 ≈ 1/137.
The factor λ is a run-time input option, that is 1 by default.
For example, letting λ → 0 (i.e., c → ∞) allows us to perform
calculations in the non-relativistic limit. This is a particularly
useful option for checking the calculations, and for determin-
ing the sensitivity of particular observables to variations in the
fine structure constant. Modifications can also be made to the
above equations to account for the finite electron/nucleus mass
(reduced mass) – but this is not implemented in the code.

2.2 Radial grid7

The equations are solved numerically on a finite radial grid. We
define a grid on the region from r0 to rmax, that has N points.
We don’t use a uniformly spaced grid, since the wavefunctions
vary very rapidly at small distances, but smoothly at large dis-
tances. We define a non-uniformly-spaced radial grid (ri) in
terms of a uniformly spaced u grid (ui+1 = ui + δu). In this
case, integrals become:∫ ∞

0

f(r) dr →
∫ rmax

r0

f(r) dr →
∫ umax

u0

f(r(u))
dr

du
du, (15)

which numerically becomes:∫ umax

u0

f(r(u))
dr

du
du→

N−1∑
i=0

f(ri)
dr

du

∣∣∣
i
δu (16)

(in the code we actually use a quadrature integration formula for
the integrals). The initial/final grid points and the grid spacings
must be chosen such that the above numerical approximations
are sufficiently accurate.

In the code, we can set either a logarithmic grid, defined:

u = ln(r),
dr

du
= r, (17)

7Radial grid defined in: /src/Maths/Grid.hpp
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Figure 2: Radial distance ri as function of grid-point, i.

or a mixed log-linear grid, defined:

u = r + b ln(r),
dr

du
=

r

r + b
, (18)

which is approximately logarithmic at small distances (r < b),
and linear at large distances (typically b∼ 10 a0); see Fig. 2.
The logarithmic grid works very well, and allows good conver-
gence without requiring a large number of points. However, it
works less well for highly excited states, and is quite poor for
continuum states with high energy. The log-linear grid works
well in a wide range of cases, but often needs more grid points
to achieve the same numerical accuracy.

2.3 Dirac equation involving inhomogeneous or non-
local terms (Green’s Method)8

This is a brief overview; for details see, e.g., Ref. [7]. Consider
the inhomogeneous Dirac equation, with ‘source’ term S:

(hl − ε)F = S, (19)

where hl is a Dirac Hamiltonian involving only local potential
terms. We solve this for a normalisable F using the Green’s
method for ODEs. First, take the homogeneous equation:

(hl − ε)G = 0, (20)

which we solve (for a given energy ε) using the regular linear
ODE multi-step methods from Sec. 2.1. Note that since F is
a normalisable solution to (19) G will not (in general) be a
normalisable solution to (20) [i.e., G is not regular at both the
origin and infinity]. Instead, we seek two solutions, which are
each bound by one of the boundary conditions; i.e., one solution
that satisfies the boundary condition at the origin, G0, and a
second that satisfies that at infinity, G∞. The normalisable
solution to (19) that satisfies both boundary conditions is:

F (r) = G∞(r)

∫ r

0

G0(r
′)T S(r′)

cw(r′)
dr′r′

+G0(r)

∫ ∞

r

G∞(r′)T S(r′)
cw(r′)

dr′, (21)

where c = 1/α. The Wronskian,

w(r) = f∞(r)g0(r)− f0(r)g∞(r), (22)

should be independent of r.
Note that this method clearly doesn’t work if w = 0; worse,

the method can be numerically unstable if S and w are both
small (if S is too small, it implies the G0,∞ solutions will be
similar, and thus w will be small).

8Implemented: /src/DiracODE/Adams Greens.hpp

2.4 Continuum orbitals

We are sometimes interested in continuum orbitals that are reg-
ular at the origin (see, e.g., Ref. [3]). For continuum orbitals of
the desired energy ε > 0, we solve using the multi-step method
described above, starting from the origin and integrating out-
wards. Note that we do not have Fc → 0 at large r, and contin-
uum orbitals cannot be normalised as above. For most problems,
however, we do require normalised orbitals.
We choose energy normalisation, such that∫ ε+δε

ε−δε

⟨ε′κm|εκm⟩dε′ = 1. (23)

This equation cannot be used directly. Instead, the solutions
are normalised in analogy with analytic Coulomb (H-like) con-
tinuum states. For Coulomb potentials, at large r we have [3]:

f(r) ≈
√

α

πβ
sin(kr + . . .), (24)

with β =
√
ε/(ε+ 2c2) (other terms in the sine function are

either constant, or logarithmic in r). At large r, the atomic
potential is also Coulomb-like. We use (24) to normalise the
orbitals by enforcing the amplitude of the sine-like orbitals at
large r to match the analytic H-like solutions [3].

To do this, we have to extend the radial grid out to very
large distances, often much larger than the normal grid used
to solve the bound-state orbitals. The orbital is solved out to
large r until the amplitude/frequency of the oscillations becomes
close enough to constant, and then the amplitude is re-scaled
to match (24). After solving, the orbital is only kept up until
rmax, since larger distances typically do not contribute to any
required radial integrals.

3 Coulomb Integrals9

Many problems will require the evaluation of matrix elements of
the two-particle Coulomb interaction (see Appendix A.2). The
Coulomb integral gabcd can be expressed:

gabcd ≡ ⟨ab|r−1
12 |cd⟩

=

∫∫
dr31dr

3
2 ψ

†
a(r1)ψ

†
b(r2)

1

|r12|
ψc(r1)ψd(r2). (25)

To evaluate these integrals, the operator r12 = |rr − r2| is ex-
panded using the Laplace expansion:

1

r12
=

∞∑
k=0

k∑
q=−k

rk<
rk+1
>

(−1)qCk
−q(n1)C

k
q (n2), (26)

where r< ≡ min(r, r′), k is called the multipolarity (with pro-
jection q), and Ck

q is a spherical tensor:

Ck
q ≡

√
4π

2k + 1
Ykq(n). (27)

Now, the radial and angular variables can be separated:

gabcd =
∑
kq

(−1)q⟨κama|Ck
−q|κcmc⟩⟨κbmb|Ck

q |κdmd⟩Rk
abcd,

(28)

9Functions to calculate Coulomb integrals defined in: /src/Coulomb/,
and functions for angular coefficients are in: /src/Angular/
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where Rk
abcd (the radial Coulomb integral) is:

Rk
abcd =

∫
dr1 [fa(r1)fc(r1) + ga(r1)gc(r1)] y

k
bd(r1), (29)

and the symmetric one-body Coulomb integral is defined:

ykbd(r) =

∫ ∞

0

rk<
rk+1
>

[fb(r
′)fd(r

′) + gb(r
′)gd(r

′)] dr′ (30)

(note some other places call ykbd(r)/r the Hartree screening func-
tion). Note that yk may be called the effective one-body (radial)
Coulomb operator, in that:

(a|ykbd|c) ≡
∫
F †
a (r)y

k
bd(r)Fc(r) dr = Rk

abcd. (31)

It is easy to see that g is symmetric under interchange of
coordinates and/or initial/final states: gabcd = gbadc = gcdab =
gdcba. The R

k
abcd integral and has more symmetries: c↔ a, b↔

d, (ac) ↔ (bd):

Rk
abcd = Rk

cbad = Rk
adcb = Rk

cdab

= Rk
badc = Rk

bcda = Rk
dabc = Rk

dcba. (32)

It is also convenient to define the anti-symmetrised Coulomb
integral [see Eq. (A.7)]:

g̃abcd = gabcd − gabdc. (33)

By making use of the Wigner-Eckart theorem, we can define
“reduced” Coulomb integrals, which do not depend on magnetic
quantum numbers (or projections). We express them as

gabcd ≡
∑
k

Ak
abcdQ

k
abcd, (34)

g̃abcd ≡ gabcd − gabdc =
∑
k

Ak
abcdW

k
abcd, (35)

where Ak
abcd depends on magnetic quantum numbers (and con-

tains a sum over projections q), while Q and W do not. Using
the graphical formalism [1] (with Lindgren phase choice),

Ak
abcd = (−1)ja−jb

b

a

d

c

k

+

−

. (36)

Explicitly,

b

a

d

c

k

+

−

= (−1)ja−ma+jb−mb+k×∑
q

(−1)q
(
ja k jc

−ma −q mc

)(
jb k jd

−mb q md

)
, (37)

where (:::) is a Wigner 3j symbol.
Using the rules for angular momentum manipulations [1, 8],

explicit equations for Qk and W k may be found:

Qk
abcd ≡ (−1)k+ja−jbCk

acC
k
bdR

k
abcd (38)

W k
abcd ≡ Qk

abcd + P k
abcd (39)

≡ Qk
abcd + [k]

∑
λ

{
ja jc k
jb jd λ

}
Qλ

abdc (40)

(note the exchange of the final two indices inside the P k defini-
tion), where {:::} is a Wigner 6j symbol, [x] ≡ 2x+ 1,

Ck
ab ≡ ⟨κa||Ck||κb⟩, (41)

= (−1)ja+1/2
√
[ja][jb]

(
ja jb k

−1/2 1/2 0

)
π(la + lb + k), (42)

and π(x) = 1(0) if x is even(odd) (parity selection rule). Note
that Ck

ab is non-zero only if

|ja − jb| ≤ k ≤ ja + jb , and la + lb + k is even. (43)

Our definition of Qk
abcd is convenient due to its symmetries:

c↔ a, b↔ d, (ac) ↔ (bd) (same as R):

Qk
abcd = Qk

cbad = Qk
adcb = Qk

cdab

= Qk
badc = Qk

bcda = Qk
dabc = Qk

dcba. (44)

P k
abcd and W k

abcd are symmetric under the subset (same as g):

P k
abcd = P k

dcba = P k
cdab = P k

badc. (45)

Note that our Qk
abcd differs from Qk(acbd) defined in Ref. [9]

by a factor (−1)k+1 (and note the second and third indices are
swapped). Our Qk and W k are related to the Xk and Zk of
Ref. [1, 2] via a factor (−1)ja−jb :

Xk(abcd) ≡ (−1)kCk
acC

k
bdR

k
abcd

= (−1)ja−jbQk
abcd (46)

Zk(abcd) = (−1)ja−jbW k
abcd (47)

Our definition is chosen to make full advantage of the symmetry.

It is also sometimes useful to define Q
k(κa)
bcd (r), which has the

form of a two-component radial spinor, such that

(Fa|Qk(κa)
bcd ) =

∫
Fa(r)

†Qk(aκa)
bcd (r) dr = Qk

abcd (48)

(similar definitions can be made for R, P , W etc.). Note that

we will often write Q
k(κa)
bcd as Q

k(a)
bcd for brevity, though note that

it only depends on the κa, and not na.

4 Hartree-Fock (self-consistent field method)10

The many-body atomic Hamiltonian may be expressed as

H =
∑
i

ĥ0(ri) +
∑
i<j

1

|ri − rj |
, (49)

where
ĥ0 = cα · p+ c2(β − 1) + Vnuc,

is the single-particle Dirac Hamiltonian including only the nu-
clear potential (see Sec. A.1). To solve the Dirac equation for an
N electron atom, we replace the complicated electron-electron

repulsion term with an approximate potential, V
(i)
avg, which is

the average potential seen by the ith electron due to the other
(N − 1) electrons:

H ≈
∑
i

[
ĥ0(ri) + V̂ (i)

avg(ri)
]
. (50)

For any general “self-consistent field method”, we start
with an initial approximation for the electronic potential (e.g.,
Thomas-Fermi potential, or a simple parametric potential), and
use this to generate a set of orbitals for the desired subset of
atomic electrons (e.g., the core). The total electron density
formed from these orbital tells us the electronic charge distribu-
tion across the atom, which we use to generate a new electronic
potential (also accounting for the exchange interaction). In gen-
eral, this new potential will be a better approximation for the

10Implemented in: /src/HF/HartreeFock.hpp
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true electronic potential than the initial guess. A new set of
orbitals formed in this better potential will be a better set of
orbitals, which we use to generate a better-yet potential and
so on, until convergence is reached. At the end, the potential
used to form the electron orbitals should be the same as the
potential that is formed from the electron orbitals, and is thus
self-consistent.

4.1 Relativistic Hartree-Fock method

We start calculations from the relativistic Hartree-Fock (HF)
method, which includes the electron exchange interaction. In
this approximation, the single-particle Dirac equation is

(hHF − ε)ϕ(r) = 0, (51)

with the Hartree-Fock Hamiltonian,

hHF = cα · p+ c2(β − 1) + Vnuc + V̂HF. (52)

Here, V̂HF is the Hartree-Fock potential. We consider mainly
atoms with a single valence electron above closed shells, and
take the Hartree-Fock potential to be the potential due to the
N − 1 core electrons. This is called the V (N−1) potential.

The form of the potential can be derived in a number of
ways, for example, by defining the mean-field potential u =
VHF such that first-order perturbation corrections vanish (see,
e.g., Ref. [2]). It is found to be

V̂HFϕa(r1) =

Nc∑
i̸=a

(∫
ϕ†i (r2)ϕi(r2)

|r12|
d3r2 ϕa(r1)

−
∫
ϕ†i (r2)ϕa(r2)

|r12|
d3r2 ϕi(r1)

)
, (53)

where the sum over i extends over all occupied electrons i =
{ni, κi,mi}. The first and second terms are the direct and ex-
change parts, respectively (the ‘Hartree’ method neglects the
exchange part). The Coulomb integrals are computed by ex-
panding r−1

12 in terms of spherical harmonics (Laplace expan-
sion) – see Section 3. Integrating over angles, and summing
over m quantum numbers we have:

V̂HFFa(r) =

(∑
b

[jb]xb y
0
bb(r)

)
Fa(r)

− 1

[ja]

∑
b

∑
k

x̃a,kb (Ck
ba)

2 ykba(r)Fb(r) (54)

≡ Vdir(r)Fa(r) + [V̂exFa](r), (55)

where now the b sum extends over all occupied orbitals (i.e.,
b = {nb, κb}), and ykab and Ck

ab are defined in section 3. The xb
term is the occupation fraction for core shell b (typically xb = 1),

and x̃a,kb = xb except for b = a, k = 0: x̃a,0a = 1; its inclusion
allows an approximate treatment for open-shell systems11.

First, the Hartree-Fock equations (51), (53) are solved self-
consistently for all the electrons in the core. Since the HF po-
tential depends on the electron orbitals (which depend on the
HF potential), this equation must be solved iteratively, starting
from an initial approximation for the potential. Once the self-
consistency is reached, the core orbitals are “frozen”. Then we

11The i sum in (53) includes a sum over all occupiedm states; for partially
filled shells, this doesn’t include all m values. So, to do the sum, we assume
each m is filled with equal probability – i.e., that each m is partially filled.

	0

	20

	40

	60

	80

	100

10-3 10-2 10-1 100 101
	0

	0.05

	0.1

	0.15

	0.2

	0.25

[X
e]
-l
ik
e	
co

re
	d
en

si
ty

6s
1/
2	
va
le
nc
e	
de

ns
ity

r/aB

HF
HF-NR
Hartree

Figure 3: Electron density ρ =
∑

n |ψn|2 for the core (solid line) and
6s valence (dashed line) electrons for Cs in the relativistic Hartree-
Fock (HF), non-relativistic Hartree-Fock (HF-NR), and Hartree ap-
proximations. Relativistic effects “pull” the electrons closer to the
nucleus, and the exchange interaction is crucial for valence states.

do the same procedure for the valence electrons; the exchange
part of the HF potential depends on the valence orbital, so these
equations must also be solved iteratively. Plots of the electron
density (ρ =

∑
n |ψn|2) for Cs are shown in Fig. 3, as calculated

in varying approximations.

The Hartree-Fock method is the ideal starting point for many-
body calculations, since all first-order corrections to the HF
potential (i.e., corrections involving single electron excitations)
cancel exactly [1]. Corrections to energies and wavefunctions
only arise at the second-order of perturbation theory.

4.2 Numerically solving the HF equation

To solve the HF equation for a given orbital, we use the Green’s
method as outlined above. The HF Hamiltonian is split in to
local and non-local parts as hHF = hl + Vnl, with

hl = h0 + Vnuc + fVdir, (56)

Vnl = (1− f)Vdir + Vexch. (57)

Here,

f =

{
(Nc − 1)/Nc core

1 valence
(58)

is chosen so that Vl = Vnuc + fVdir → −Zion/r as r → ∞
(otherwise, we would have Vl → 0). This is done to ensure the
existence of the solution that is regular at infinity (G∞), and
so that the asymptotic behaviour of the homogeneous solutions
(20) match that of the final solution.

Then, the inhomogeneous equation has the form of Eq. (19):

(hl − ε)F = −VnlF. (59)

Note that the “source” term in this case contains the solution F .
So the equations must be solved iteratively, with some starting
approximation for the source term, so that the solution at the
nth step depends on the approximate solution from the previous
step. Further, Vnl and hl also depend on the solution F via (55),
and these are also formed at the nth step using F (n−1). That
is, the equation we solve at each iteration is(

h0 + Vnuc + fV
(n−1)
dir − ε

)
F (n) =

−
(
(1− f)V

(n−1)
dir + V

(n−1)
exch

)
F (n−1). (60)

5
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The energy guess used for the (n+1)th step can be approximated

from ∆V (n) ≡ V
(n)
HF − V

(n−1)
HF , as ε(n) + δε:

δε ≈ ⟨F (n−1)|∆V |F (n)⟩
⟨F (n−1)|F (n)⟩ . (61)

In general, these solutions will not be correctly normalised
eigenstates of the HF Hamiltonian. We therefore make small
adjustments to the energy and orbital until F is properly nor-
malised and thus an eigenstate of the Hamiltonian. This proce-
dure is outlined in the next subsection 4.3.

Once the energy has been fine-tuned, and we have a nor-
malised eigenstate, we continue the HF procedure. To aid con-
vergence, however, we first “damp” the orbitals as:

F → (1− η)F + ηFold. (62)

This both increases the numerical stability, and speeds up the
convergence. So long as the equations converge, the solutions
do not depend on the value chosen.

4.3 Energy adjustments – finding eigenstate

The above procedure finds a solution, F0, to the HF equation
(60) given the energy guess ε0. Since ε0 is unlikely the correct
eigen-state energy, this solution will not be properly normalised.
Assume the correct orbital and energy can be written as F0+δF ,
and ε0 + δε. Substituting this back into the HF equation, we
find a new inhomogenous equation (to first order):

(hHF − ε0)δF = δεF0 (63)

(hl − ε0)δF = δεF0 − VnlδF, (64)

which we solve iteratively for δF and δε. As the first step, we
divide (64) by the unknown δε, set VnlδF = 0, and solve for
F̃ ≡ δF/δε using Green’s method (21). Note that we don’t
need to re-solve the homogeneous equation (20), since we can
re-use the G∞, G0 solutions obtained when solving (60).
Since (F +δF ) must be normalised, we find the first guess for

δε as (keeping only first-order terms):

δε =
⟨F |F ⟩ − 1

2⟨F |F̃ ⟩
. (65)

Using δF = δεF̃ , we form VnlδF and solve (64) for δF . Then,
we make the corrections to the orbital and energy:

F = F0 + δF , ε = ε0 + δε. (66)

This iterative procedure is continued from Eq. (64) until the
energy correction drops below a specified value (i.e., until F is
properly normalised). This procedure is very rapid; e.g., δε/ε
typically converges to parts in 1020 with just two iterations.
Note that, so long as it was chosen appropriately, the non-

local term Vnl is small, and so the VnlδF term is even smaller and
can be excluded entirely in this section without having much of
an impact. Including it, however, leads to better overall conver-
gence of the HF equations. Note that VnlδF includes VexchδF ,
which must be calculated.

4.4 Approximate “local” exchange potential

There are several methods for obtaining a localised approxima-
tion to the HF potential, common examples are the “Hartree-
Fock-Slater” [10], and Kohn-Sham methods. Here, I outline a

different method that very well approximates the HF potential.
We use this only as a starting point for the HF (and TDHF)
procedure, so final result do not depend on this potential. A
good choice of starting approximation does, however, speed up
the convergence of the iterative procedures.

Introducing the notation vxab [see Eq. (54)], the non-local ex-
change part of the HF potential can be expressed

[V̂exFa](r) =
∑
b

vxab(r)Fb(r). (67)

Multiply (67) from the right and divide by F †
aFa:

[V̂exFa]F
†
a

F †
aFa

Fa =

∑
b v

x
ab(r)Fb(r)F

†
a (r)

F †
aFa

Fa(r) (68)

≈ U (a)
ex (r)Fa(r). (69)

In this way we may define U
(a)
ex (r), which is a localised exchange

potential (for state a). Note that U(r) is different for each state,
and depends on Fa, and therefore must be found iteratively.

This is numerically unstable when F †
aFa is small. However,

when Fa is small, the exchange potential is less important (only
the combination VexFa enters the equations). We proceed by
introducing a cut-off, λa, so that

U (a)
ex (r) = vxaa(r) +

∑
b ̸=a

vxab(r)Λ(r), (70)

Λ(r) =


F †
a (r)Fb(r)

F †
aFa

|fa(r)| > λa

0 otherwise

. (71)

We don’t apply the cut-off for the b = a term, since there is ex-
act cancellation and no numerical instability. This a = b term
gives the dominant contribution to the exchange potential. The
reason this method gives such good results is that the dominat-
ing case is treated exactly. In the code, the cut-off is taken as
λa = 10−2|fa|max, where |f |max is the maximum magnitude for
the upper f(r) component of Fa. Making the cut-off too small
introduces numerical instabilities.

5 Algebraic solution to the Dirac equation (basis)12

In many problems in perturbation theory, a summation over the
full (infinite) set of orbitals is required. In theory, a basis of HF
orbitals can be used for this. However, such a basis generally
converges very slowly, requires a very large radial grid, and the
solutions become numerically unstable for low energies. Further,
sum over all states must include the integral over all positive-
and negative-energy continuum states. Instead, it is common
to introduce a finite basis for the radial Dirac equation, see,
e.g., Ref. [11, 12]. We assert that all orbitals go to zero at the
boundary of a subset of the radial grid, rmax. This is equivalent
to placing the atom in the centre of an infinite spherical “square-
well” potential. In this case, a complete set of orbitals can be
approximately expanded in terms of a finite number of discreet
states. So long as the size of the cavity is large compared to
typical radius of orbitals we are directly interested in, the results
should be independent of the cavity size.
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Table 1: Comparison between energies of spline (DKB) basis orbitals and finite-difference Hartree-Fock orbitals. The basis was constructed
using 50 B-splines of order 7 in a cavity of radius 30 aB with the first internal point at r = 10−5 aB (only the first 10 splines of each symmetry
are shown). Final column shows the root-mean-square radii for the Hartree-Fock orbitals. The spline basis energies agree very well (better
than parts in 106) with the Hartree-Fock energies, so long as the cavity is large compared to the typical radius of the orbital in question; for
higher orbitals, where this is not the case, the energies diverge significantly. [ϵ = (A−B)/A]

s1/2 p1/2
n εspline εHF ϵ ⟨r2⟩1/2HF εspline εHF ϵ ⟨r2⟩1/2HF

1 −1330.1186542 −1330.1188558 −2e−7 0.03
2 −212.5644469 −212.5644963 −2e−7 0.12 −199.4294948 −199.4295038 −5e−8 0.10
3 −45.9697097 −45.9697486 −8e−7 0.32 −40.4482937 −40.4483086 −4e−7 0.31
4 −9.5127994 −9.5128206 −2e−6 0.74 −7.4462753 −7.4462846 −1e−6 0.77
5 −1.4898011 −1.4898044 −2e−6 1.88 −0.9078963 −0.9078975 −1e−6 2.15
6 −0.1273679 −0.1273681 −1e−6 6.52 −0.0856153 −0.0856159 −6e−6 8.65
7 −0.055047 −0.0551874 −3e−3 14.58 −0.0411125 −0.0420214 −2e−2 18.16
8 −0.0240059 −0.0309525 −3e−1 25.77 −0.0110954 −0.0251205 −8e−1 30.79
9 0.0147887 −0.0198146 40.11 0.0314743 −0.0167280 46.56
10 0.0679063 −0.0137713 57.61 0.0877553 −0.0119427 65.48

Table 2: Magnetic dipole hyperfine constants A (MHz) for single-particle s-state Cs orbitals (point-like nuclear magnetisation distribution).
Calculated using the Hartree-Fock orbitals, and the DKB basis constructed using 50 B-splines of order 7 in a cavity of radius 50 aB , with
varying first internal point (A is sensitive to orbitals at small radial distances). [ϵ = (A−B)/A]

r0 = 10−4 aB 10−5 aB 10−6 aB
n AHF ASpline, ϵ ASpline, ϵ ASpline, ϵ

1 3.9180×107 3.8361×107 −2×10−2 3.9172×107 −2×10−4 3.9179×107 −3×10−6

2 4.6208×106 4.5209×106 −2×10−2 4.6199×106 −2×10−4 4.6207×106 −3×10−6

3 9.3463×105 9.1437×105 −2×10−2 9.3446×105 −2×10−4 9.3462×105 −1×10−5

4 1.9822×105 1.9392×105 −2×10−2 1.9819×105 −2×10−4 1.9823×105 4×10−5

5 2.7987×104 2.7380×104 −2×10−2 2.7982×104 −2×10−4 2.7988×104 5×10−5

6 1.4337×103 1.4022×103 −2×10−2 1.4334×103 −2×10−4 1.4336×103 −4×10−5

5.1 B-spline basis

The set of atomic orbitals are expanded as

Fnκ =

2N∑
i

piSi(r), (72)

where {Si} are a set of 2N basis functions that form an ap-
proximately complete set over a sub-domain of the radial grid
[0, rmax] (N is defined this way because of the duel set of pos-
itive/negative energy Dirac solutions). The {pi} expansion co-
efficients are found by diagonalising the set of basis functions
with respect to the Hamiltonian matrix, equivalent to solving
the (generalised) eigenvalue problem:∑

j

⟨Si|ĥHF|Sj⟩pj = ε ⟨Si|Sj⟩pj . (73)

∑
j

hijpj = εSijpi. (74)

There are 2N solutions of eigenvalues ε with corresponding
eigenvectors p⃗, which correspond to the spectrum of stationary
states; N of these correspond to negative-energy (ε < −mc2)
states. If the {S} set is orthonormal, Sij is just the identity;
in general it is not. Both hij and Sij are positive-definite, real,
symmetric matrices. States of different κ are orthogonal, so the
hij matrix can be chosen to be block diagonal (in κ); i.e., the
expansion may be performed separately for each κ.
The choice of basis must account for the boundary condi-

tions for the stationary states. A good choice of basis allows
for convergence of many-body problems with fewer basis states.

12Implemented in: /src/Wavefunction/BSplineBasis.hpp

The particular choice we use is called the Duel-Kinetic-Balance
(DKB) B-spline basis as introduced in Ref. [13];

SDKB
i =



(
bi(r)

α
2 (∂r + κ/r) bi(r)

)
0 ≤ i < N(

α
2 (∂r − κ/r) bi−N (r)

bi−N (r)

)
N ≤ i < 2N.

(75)

full details, including on including boundary conditions, are
given in that work (see also [12, 14] and the review [15]). Note
that the boundary conditions are met by discarding some of the
underlying bi(r) b-splines; when we talk of an expansion using
N splines, we refer only to the ones that are kept; the under-
lying spline basis consists of a slightly larger set [13]. Another
common choice, which we refer to as the Notre-Dame (ND) ba-
sis [12] may be formed with the lower-component of (75) set
to zero for i < N , and the upper set to zero for i ≥ N ; this
set requires extra conditions for the boundary conditions to be
met [12].

Each B-spline, b
(k)
i (r), is a polynomial of order k (degree k−

1), that is non-zero only in the interval ti ≤ r < ti+k, where
{ti} are a set of (N + k − 2) “knots” (the Si basis orbitals are
non-zero also only in this region). The first “interior” knot is
placed at r0 and the last at rmax

13, and the rest are distributed
uniformly along the u radial grid (see Sec. 2.2). The piecewise
nature of the splines simplifies the integrals, and makes hij and
Sij banded matrices, which can typically be solved with high
numerical precision.

The basis orbitals are typically defined on a smaller sub-
domain of the radial grid. The benefit of restricting the radial

13The actual first knot is placed at 0; the end knots are repeated k times.
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sub-domain for the basis is that reasonable completeness can
be achieved with fewer basis functions. However, increasing r0
too much degrades the low-r behaviour of the basis orbitals,
and making rmax too small loses the correspondence between
the “real” and basis orbitals. The ideal choice of sub-domain
depends on the specifics of the problem. Table 1 shows the en-
ergies of spline orbitals, using 50 B-splines of order 7 in a cavity
of radius 30 aB with the first internal point at r = 10−5 aB .
This spline basis is orthogonal (or normal) with respect to the
Hartree-Fock core to parts in 106; the basis itself is orthogonal
to parts in 1015. Table 2 shows hyperfine constants calculated
using spline orbitals, which is a test of the low-r performance of
the orbitals.14

6 External fields & matrix elements (RPA)15

6.1 Time-dependent Hartree-Fock

In the presence of a time-varying external field of frequency ω,

T k
q = tkq e

−iωt + tk†q e
+iωt, (76)

where tkq is an irreducible tensor operator of rank k (projection
q) and parity π, the orbitals will contain time-varying pertur-
bations:

ϕ→ ϕ+ δϕ(t) = ϕ+Xe−iωt + Y eiωt, (77)

and ε→ ε+ δε(e−iωt + eiωt). Keeping terms only to first-order
in t, the corrections satisfy the equations (e.g., [9]):

(hHF − ε− ω)X = −
(
tkq + δV − δε

)
ϕ

(hHF − ε+ ω)Y = −
(
tk†q + δV † − δε

)
ϕ,

(78)

and δε = ⟨ϕ|tkq + δV |ϕ⟩. In general, these are called the “mixed-
states” equations for orbital ϕ. In Eq. (78), δV is the correction
to the HF potential arising due to the corrections {X, Y } to
each of the core orbitals:

δV = VHF({ϕ+ δϕ})− VHF({ϕ}). (79)

Explicit formulas for δV will be given later. Note that Eqs. (78)
and (79) must be solved self-consistently for all the core orbitals
to obtain δV ; this is known as the time-dependent Hartree-Fock
(TDHF) method. The term δV leads to important corrections
to matrix elements known as core polarisation, which will be
discussed further later.

Note that tkqϕa is not (in general) a state of definite angular
momentum, though is a state of definite parity, and contains
terms with j ∈ [ja − k, ja + k] and parity π · πa, where πa =
(−1)la is parity of state ϕa. To continue to work in the basis of
definite angular momentum, we make use of the Wigner-Eckart
theorem to define the reduced projection [tkϕa]n, which is a state
of definite angular momentum (with κ = κn), such that:

tkqϕa =
∑
n

(−1)jn−mn

(
jn k ja

−mn q ma

)
δππa,πn [tkϕa]n. (80)

Only terms allowed by the selection rules contribute to the sum:
the 3j symbol is zero unless the triangle rule ∆(jn, k, ja) (and
mn = q + ma) is satisfied, and the Kronecker delta encodes
parity selection rule. The coefficient in Eq. (80) is chosen so

14The input files used to generate these tables are provided in:
/doc/examples/Cs testBasis.in

15Implemented in: /src/ExternalField/

that the inner-product of the projected state with ϕn gives the
reduced matrix element of t:

⟨n|[tkϕa]n⟩ = ⟨n||tk||a⟩, (81)

where the reduced matrix element is defined via

⟨n|tkq |a⟩ = (−1)jn−mn

(
jn k ja

−mn q ma

)
⟨n||tk||a⟩ (82)

The same definition is made for δV : ⟨n|[δV ϕa]n⟩ = ⟨n||δV ||a⟩.
Note that this choice of coefficient means that the reduced pro-
jection [tkϕa]n is independent of the magnetic quantum numbers
ma,mn and projection q due to the Wigner-Eckart theorem.

Of course, this means the correction δϕ is also not (in general)
a state of definite angular momentum (hence ‘mixed-states’). In
the same way, we expand X and Y in terms of projected states
χ and η of definite κ:

Xa =
∑
n

(−1)jn−mn

(
jn k ja

−mn q ma

)
δππa,πn χ

a
n. (83)

Here, the superscript refers to the unperturbed state that X is a
correction to, while the subscript refers to the angular quantum
numbers of the corrections. Note that {χn} are orthogonal (and
are orthogonal to ϕa), and form a linearly independent set of
solutions to (78). Therefore, the mixed-states equations can be
re-cast in terms of states of definite angular momentum as:

(hHF − εa − ω)χa
n = −[(tk + δV )ϕa]n + [δεa]n (84)

(hHF − εa + ω) ηan = −[(tk† + δV †)ϕa]n + [δεa]n, (85)

where we also defined

[δεa]n ≡ ⟨a||h+ δV ||a⟩ δan. (86)

The corrections may be expressed as:

|Xa⟩ =
∑
n ̸=a

|n⟩⟨n|tkq + δV |a⟩
εa − εn + ω

|Y a⟩ =
∑
n ̸=a

|n⟩⟨n|tk†q + δV †|a⟩
εa − εn − ω

,

(87)

and it is possible to calculate them that way. Instead, we solve
the mixed-states equations (78) without the need for a basis.

6.2 Solving the mixed-states equations16

The δV term in (78) is very important and will be discussed in
the next section. Here, we will ignore how it is calculated and
just focus on solving the inhomogenous equations.

As before, we express the Hamiltonian as H = Hl + Vnl:

Hl = H0 + Vnuc + Vdir + Ux (88)

Vnl = Vexch − Ux, (89)

where Ux is a local approximation to the exchange potential. In
the simplest case it is (f−1)Vdir, but better approximations aid
the convergence (see Sec. 4.4).

We solve the equations iteratively, such that at the nth step:

(Hl − ε± ω)X(n) =

− (VnlX)(n−1) −
(
tkq + δV − δε(n−1)

)
ψa, (90)

16Functions for solving the mixed-states/TDHF equations are
in: /src/ExternalField/MixedStates.hpp
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Table 3: Testing TDHF method using Eq. (95) for Cs, with m =
6p1/2, ψ = 6s1/2 (Hartree-Fock level, no δV ).

Operator (95) lhs (95) rhs ϵ∗

hE1 (ω = ωHF) 63.2029312 63.2025676 6×10−6

hE1 (ω = 0) 126.405501 126.405135 3×10−6

hPNC (ω = 0) -1.0700928 -1.0700932 4×10−7

∗ϵ ≡ (lhs − rhs)/lhs

with VnlX = 0 initially. From Eq. (21), the solution is

Xα =
X∞

α

cw

∫ r

0

{
X0

α|S
}
r2dr′ +

X0
α

cw

∫ ∞

r

{X∞
α |S} r2dr′, (91)

where w is the Wronskian (21), and S is the rhs of Eq. (90)
(the δε term only contributes for the X term with α = a).
The X0,∞

α orbitals here are the solutions with Dirac quantum
number α to the homogenous equation (20). We defined here
the “partial” matrix elements, that include only the integral
over angular coordinates:{

ψa|tkq |ψb

}
≡
∫
ψ†
at

k
qψb dΩ. (92)

We similarly define the partial reduced matrix element:{
ψa|tkq |ψb

}
≡ (−1)ja−ma

(
ja k jb

−ma q mb

){
ψa||tk||ψb

}
. (93)

Then, in terms of the partial waves (χ), the solution becomes:

χα =
χ∞
α

cw

∫ r

0

{
χ0
α||S

}
r2dr′ +

χ0
α

cw

∫ ∞

r

{χ∞
α ||S} r2dr′. (94)

This is done so that we only need to calculate the (m-

independent) reduced matrix element of ĥ. The radial integral
|χα|2 is used to control convergence (for including the exchange
term). Using Ux from Sec. 4.4, convergence (for a given orbital)
to parts in 109 is typically reached in ∼ 10 iterations. For the
case that κα = κa (which only happens for even operators), one
should explicitly ensure that χα is orthogonal to ψa.

One may use the perturbation expression (87) to test the
method. Consider, e.g., (excluding δV )

⟨m|χ⟩ = ⟨m||tk||ψ⟩
ε− εm + ω

, (95)

which can be calculated both ways (lhs vs rhs); see Table 3.
An important application of this technique is that it allows

calculations to be done without requiring a summation over
the complete set of intermediate states (replaced by solving
the inhomogeneous differential equation). This method of per-
forming exact summation over intermediate states is sometimes
called the Solving Equations, Mixed States, or Dalgarno-Lewis
method [16], depending on context. In this example (95) the
intermediate-states summation is trivial, since it involves only
single operator and hence only a single intermediate state con-
tributes. In general, all intermediate states (including contin-
uum and positive energy states) contribute, so this method al-
lows calculations without the need for a large basis.
Another way to test the method is to consider the parity

non-conservation (PNC) amplitude, which is a correction to the
(otherwise forbidden) E1 transition between states of the same
parity, due to the parity-violating weak interaction between the
electrons and nucleus (see, e.g., Ref. [17]). This can be expressed
as a sum over all intermediate states n:

E
(z)
PNC =

∑
n

⟨B|dz|n⟩⟨n|hW|A⟩
εA − εn

+
⟨B|hW|n⟩⟨n|dz|A⟩

εB − εn
, (96)

Table 4: Comparison of PNC amplitudes (at the HF level) for 133Cs
as calculated using the TDHF method, and direct summation using
a spline basis [in a cavity of (10−6, 50) aB using N splines of order k].

Direct Summation: N/k
Transition TDHF 50/5 60/6 70/7

6s− 7s -0.73954 -0.73948 -0.73953 -0.73954
6s− 5d3/2 -2.4000 -2.3998 -2.4000 -2.4000

where d is the E1 operator, and hW is the PNC operator. Using
the TDHF (Dalgarno-Lewis) method as described in Sec. 6.1,
this can also be expressed in two other formally equivalent ways:

E
(z)
PNC = ⟨B|dz|δA(W )⟩+ ⟨δB(W )|dz|A⟩ (97)

= ⟨δB(d)|hW|A⟩+ ⟨B|hW|δA(d)⟩, (98)

where δA(W/d) is the correction to orbital A due to the weak/E1
interaction. Comparing the results of Eqs. (97) and (98)
tests the numerical accuracy of the Dalgarno Lewis (solving-
equations) method, and comparing these to the result of (96)
gives a good test of the basis. The two forms of the Dal-
garno Lewis method agree to parts in 108. Comparison between
the PNC amplitude as calculated using this and the direct-
summation method is in Table 4.

6.3 Core polarisation (RPA)17

This section largely follows Ref. [9] (see also [18–21]). In the
presence of an external field, the core electrons become per-
turbed (77), and a correction to the HF potential is induced.
This leads to important corrections to the matrix elements of
the external field operator. This effect is often called core polari-
sation, and is particularly important since it involves corrections
with single excitations from the HF core (in the absence of an
external field, the lowest-order corrections to the HF potential
involve double excitations). The method described here is often
referred to as the random phase approximation (RPA).

To account for core polarisation, the set of TDHF equations
(78) are solved self-consistently for each of the core orbitals (see
Sec. 6.1). The δV term is the correction to the HF potential:

δV = VHF({ψb + δψb})− VHF({ψb}), (99)

where {ψb} denotes the set of all core orbitals.

The TDHF equations are solved iteratively, updating the δV
and δε terms at each step until convergence is reached; i.e., at
the nth step, we have

(hHF − ε− ω)X
(n)
β = −

(
ĥ+ δV (n−1) − δε(n−1)

)
ψb, (100)

with δV = 0 for the initial iteration (similarly for Y ). The δε
term only survives in the equations when β = b [see Eq. (91)].

Combining Eqs. (99) with (77), (83), and (53), we have:

δV ϕa(r1) =

Nc∑
i ̸=a

∫
d3r2
|r12|

(
ϕ†i (r2)

[
Xi(r2)ϕa(r1)− ϕa(r2)X

i(r1)
]

+ Y i†(r2) [ϕi(r2)ϕa(r1)− ϕa(r2)ϕi(r1)]
)
. (101)

17Implemented: /src/ExternalField/CorePolarisation.hpp, TDHF.hpp
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v w v w

v

w

v

w

Figure 4: Diagrams representing the lowest order direct and ex-
change core-polarisation (RPA) corrections to the ⟨w|ĥ|v⟩ amplitude.
Wavy line is Coulomb interaction, dotted line is external field (ĥ).
All internal lines are summed over: forwards lines are virtual excited
states, backward lines are holes in the core. In higher-order diagrams,
each ĥ vertex is corrected again by these four diagrams (RPA).

The reduced matrix elements of δV are:

⟨ϕn||δV ||ϕa⟩ =
∑
bβ

(−1)jn−jβ+k

[k]

(
W k

nbaβ +W k
nβ′ab

)
, (102)

where the reduced Coulomb integrals W k are defined in sec-
tion 3. The sum b runs over core orbitals, and β runs over all
corrections to b [Eq. (83)]. The prime (β′) means the ηβ orbital
is used; no prime means χβ . The equation for ⟨ϕn||δV †||ϕa⟩ is
the same, but with β ↔ β′.

The amplitude for a transition from state v → w in the TDHF
method can be found from analogy with regular time-dependent
perturbation theory (e.g., [22]), where

δψv(t) ≃
Mwv

εv − εw + ω
ψbe

−iωt

(keeping only the resonant term with ω ≈ εv−εw). At the same
time, from Eq. (78), we have

⟨ψw|δψv(t)⟩ = ⟨ψw|Xv⟩e−iωt =
⟨ψw|tkq + δV |ψv⟩
εv − ϵw + ω

e−iωt. (103)

Combining leads to the expression:

Mwv = ⟨w|tkq + δV |v⟩. (104)

Since δV was found self-consistently, the matrix elements in-
clude core polarisation to all-orders [9, 23]. This is equivalent
to the RPA method (see, e.g., Ref. [2]). If the equations (100)
are solved just once (without iterations), it corresponds to the
lowest (first) order correction to the amplitude, which are shown
in Fig. 4. Further iterations correspond to higher-orders.

6.4 RPA diagram technique18

The core polarisation correction to a matrix element can also
be taken into account by directly evaluating the four diagrams
in Fig. 4. To lowest order, the matrix element of operator ĥ is

h
(0)
ij . The first-order correction is then [1]:

δhij =
∑
ma

h
(0)
amg̃imja

εa − εm − ω
+
∑
ma

h
(0)
mag̃iajm

εa − εm + ω
, (105)

18Implemented in: /src/ExternalField/DiagramRPA.hpp

where g̃abcd = gabcd − gabdc, with gabcd being the two-electron
Coulomb matrix element (see appendix for definition). The a
sum runs over all occupied core electrons (n, κ,m), whilem runs
over all virtual excited states.

In the RPA method, the lowest-order matrix elements in δhij
(105) are then replaced with the corrected values. This process
is repeated iteratively (for all core states i and j) until conver-
gence is reached; i.e., at the nth iteration we have:

δhnij =∑
ma

(
(h

(0)
am + δhn−1

am )g̃imja

εa − εm − ω
+

(h
(0)
ma + δhn−1

ma )g̃iajm
εa − εm + ω

)
. (106)

The reduced matrix element in the RPA approach is then:

⟨i||h||j⟩RPA = ⟨i||h||j⟩+ ⟨i||δh||j⟩, (107)

with

⟨i||δh||j⟩ = 1

[k]

∑
am

(−1)ja−ji+k

(
⟨a||h||m⟩RPAW k

imja

εa − εm − ω

+ (−1)ja−jm
⟨m||h||a⟩RPAW k

iajm

εa − εm + ω

)
, (108)

(sum is now over orbitals n, κ). RPA matrix elements between
valence states have the same expression (the equations need only
be iterated for the core electrons). Note thatW depends only on
the rank of the operator, so in theory, they need only be calcu-
lated once. In practise, we only calculate W k

imja when ham ̸= 0,
meaning effectively thatW also depends on the operator parity.
It can be shown the diagram and TDHF methods are equivalent:
⟨i||δh||j⟩ = ⟨i||δV ||j⟩ [see Eq. (87)].

6.5 Core polarisation (“basis” technique)19

Sometimes, the TDHF equations do not converge due to in-
stabilities in solving the mixed-states equations (78). There
are several ways to proceed in these cases, including using the
diagram method as above, and using algebraic (matrix) tech-
niques [21]. We also implement a method where the TDHF
equations are solved using perturbation theory, by expanding
the χ and η functions over a basis using Eq. (87). (Note that,
unlike the matrix technique, this required iterations since the
expansion depends on δV .) Then, δV remains as Eq. (102).
This allows inclusion of the Breit effect into δV (see Sec. 11.1)
(which are not so simple to include in the diagram method).

7 Correlation corrections20

Correlation corrections are the deviation from the pure single-
particle picture, and correspond to many-body effects beyond
the mean field (Hartree-Fock) approximation. The many-body
atomic Hamiltonian may be expressed as

H =
∑
i

hHF(ri) + δVcorr, (109)

where hHF(ri) is the single-particle HF Hamiltonian (52), and

δVcorr =
∑
i<j

1

rij
−
∑
i

VHF(ri) (110)

19Implemented in: /src/ExternalField/TDHFbasis.hpp
20Implemented in: /src/MBPT/CorrelationPotential.hpp
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Figure 5: Goldstone diagrams for the second-order correlation cor-
rection to the energy for valence state v. Backward facing lines denote
(single-particle) states in the core; n and m are virtual excited states.
Diagrams (a) and (c) are direct diagrams, (b) and (d) are correspond-
ing exchange diagrams.

is the residual Coulomb interaction (beyond the mean potential)
that may be taken into account perturbatively. We consider
the case of an atom with a single valence electron (v) above
closed shells. In the single particle picture, this perturbation
corresponds to residual interactions of the valence electron with
the indevidual electrons in the core. Starting from the Hartree-
Fock method with a V N−1 potential, there are no first-order
corrections to the wavefunction (that is, corrections involving a
single core excitation) [1].

Notation: I use the convention that letters at the beginning
of the alphabet (a, b, ...) denote occupied core states (or holes),
those from the middle (n, m, ...) denote virtual excited states,
and those from the end (v, w, ...) denote valence states. The
letters (i, j, ...) are dummy indices that may stand for any state.

7.1 Second-order correlations: Goldstone technique

This section follows closely the method from Ref. [9]. Goldstone
diagrams for the second-order correction to the valence energy
are shown in Fig. 5. This can be expressed as [2, 9]:

δEv =
∑
amn

gvamng̃nmav

εv + εa − εm − εn
+
∑
abn

gvnabg̃banv
εv + εn − εa − εb

, (111)

where m and n run over (unoccupied) virtual excited states,
and a and b run over (occupied) core states (there is an implicit
sum over magnetic quantum numbers here). The first term cor-
responds to the diagrams (a) and (b), the second to (c) and
(d) [Fig. 5]. Integrating over angular coordinates, and summing
over magnetic quantum numbers, gives [9]

δEv =
∑
k

1

[k][jv]

(∑
amn

Qk
vamnW

k
vamn

εv + εa − εm − εn

+
∑
abn

Qk
vnbaW

k
vnba

εv + εn − εb − εa

)
, (112)

where Qk, W k and are given by Eqs. (38), (39), and we used
the symmetries and angular identities given in Section 3.

We define the correlation potential, Σ̂, so that its matrix el-
ements correspond to the energy shift: ⟨v|Σ(2)|v⟩ = δEv. We
may express the (energy dependent) second-order correlation

potential as

Σ̂(2)
ε =

∑
k

1

[k][jv]

(∑
amn

|Qk(v)
amn⟩⟨W k(v)

amn|
ε+ εa − εm − εn

+
∑
abn

|Qk(v)
nba ⟩⟨W

k(v)
nba |

ε+ εn − εb − εa

)
, (113)

which is sometimes called the self-energy operator. This has the
form of a sum of operators, which can be expressed in (radial)
coordinate space as

G
(v)
nba(r1, r2, ε) =

∑
k

1

[k][jv]

Q
k(v)
nba (r1)W

k(v)
nba (r2)

ε+ εn − εb − εa
. (114)

Thus the correlation potential may be expressed as

Σ(2)
ε (r1, r2) =

∑
abnm

[
G(v)

amn(r1, r2, ε) +G
(v)
nba(r1, r2, ε)

]
. (115)

Note that Σ is a matrix in (radial) spinor space:

Σ ∝
(
fQ(r1)fW (r2) fQ(r1)gW (r2)
gQ(r1)fW (r2) gQ(r1)gW (r2)

)
, (116)

where f and g are the large and small components of the Q/W
radial spinors. Each of these four terms can themselves be rep-
resented as square matrices (on a radial grid). It is common to
only calculate the first (ff) term; it is also common to store the
Σ matrix on only a subset of the radial grid.

7.2 Correlation potential method (Brueckner orbitals)

In the correlation potential method [24, 25], the non-local energy-
dependent Σ operator is added to the single-particle Hartree-
Fock equation for the valence states:

(hHF + Σ̂ε)ψ
(Br) = ε(Br)ψ(Br). (117)

The resulting orbitals, known as Brueckner orbitals21, include
the second-order correlation effects. This means, for example,
the dominant correlation corrections can be included into the
calculation of matrix elements simply by using the Brueckner
orbitals, e.g., ⟨aHF|v̂|bHF⟩ → ⟨aBr|v̂|bBr⟩. We will drop the (Br)
superscript from here on unless it is necessary to avoid confusion.
The iterations of the Hartree-Fock equation for the valence state
actually means that certain classes of diagrams are included to
all orders; this is called the chaining of the self-energy operator.
The Σ operator should be evaluated at the Hartree-Fock en-

ergy of the valence state. The correlation potential depends only
weakly on εv [see Eq. (111)], so it is often instead found at the
energy of the lowest valence state v of the given symmetry (since
this is typically where the highest accuracy is required, and be-
cause the correlation corrections are larger for lower states).

One may also include the correlation corrections into a set of
basis orbitals by adding the correlation potential to the Hartree-
Fock Hamiltonian when solving the eigenvalue problem for the
set of B-splines; i.e.,

hij → ⟨Si|ĥHF|Sj⟩+ ⟨Si|Σ̂ε|Sj⟩ (118)

in Eq. (73). This leads to an (approximately) complete set of
orbitals that include correlation effects. These orbitals may then

21Note that the exact definition of “Brueckner” orbitals varies slightly
depending on the source; we use the definition from [24].
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be used in calculations requiring a summation of a complete set
of orbitals; so this method allows the inclusion of correlation
corrections into such calculations in a reasonably simple way.

The correlation potential can also be taken into account in
the TDHF method for the valence state (see Eq. (78)):(

hHF + Σ̂ε − ε− ω
)
X = −

(
t̂+ δV − δε

)
ψv. (119)

This gives a means of including the correlation corrections into
the Dalgarno-Lewis (Mixed-States) method.

8 Correlation potential: Feynman method

In the previous section, I described the usual second-order
many-body perturbation theory method using the Goldstone
diagram technique. Here, I outline an alternative approach: the
Feynman method. This method does not require a summation
over intermediate states (i.e., no basis is required), but instead
introduces an integral over frequencies. Importantly, the Feyn-
man method allows several classes of dominating higher-order
corrections (Coulomb screening and the hole-particle interac-
tion) to be included to all-orders by an exact summation of
series of diagrams. This section describes the method as devel-
oped in Ref. [26], and follows that work closely; see also [27–29].

In this section, I will sometimes include subscripts on the
Dirac bra/kets to indicate which coordinate they belong to. I
will also abuse the Dirac notation here so that |a⟩1 is just a
short-hand for ϕa(r1); note that when the coordinate index is
shown, there is no implied integration in the braket, e.g.:

⟨a|1|b⟩1 = ϕ†a(r1)ϕb(r1), while ⟨a|b⟩ =
∫

d3r′ϕ†a(r
′)ϕb(r

′).

8.1 Feynman Green’s function

First, we introduce the Feynman Green’s function, which can
be expressed as (see [26, 27] and references therein):

Ĝ(ε) = lim
δ→0

(
core∑
a

|a⟩⟨a|
ε− εa − iδ

+

exc.∑
n

|n⟩⟨n|
ε− εn + iδ

)
. (120)

Note that, if ε is the (single-particle) ground-state energy, ε >
εa, but ε < εn. Conceptually, the simplest way to evaluate it is
by summation over the complete set of core and excited orbitals
using a pseudospectrum basis as described previously. It is also,
however, possible to evaluate the Green’s function exactly (up
to numerical errors) without the need for a basis.

Consider the inhomogeneous Hartree-Fock equation including
the direct (Vd) and exchange (Vx) potentials, and its homoge-
neous counterpart (without exchange):

(h0 + Vd − ε)ϕ = −Vxϕ (121)

(h0 + Vd − ε)χ = 0, (122)

with χ0 being the homogeneous solution regular at the origin,
and χ∞ that regular at infinity. The local Green’s function
(without exchange) can be expressed in coordinate space as:

Ĝ0 ≡ G0(r1, r2) =
χ0(r<, n̂)χ∞(r>, n̂)

w
, (123)

where r< = min(r1, r2), and w = (f0g∞ − f∞g0)/α (w is inde-
pendent of r, and f, g are radial components of χ). Exchange
can be taken into account by solving the Dyson equation [27, 28]

Ĝ = Ĝ0 + Ĝ0V̂xĜ =
[
1− Ĝ0V̂x

]−1

Ĝ0. (124)

The local direct and non-local exchange operators are

V̂d =

core∑
a

⟨a|Q̂|a⟩, and V̂x = −
core∑
a

|a⟩Q̂⟨a|, (125)

respectively, with the (two-particle) Coulomb operator:

Q̂(r1, r2) = r−1
12 . (126)

These operators may be represented as coordinate matrices:
e.g., Ĝ⇔G(r1, r2). Multiplication is understood to mean:

Ŵ = X̂Ŷ Ẑ ⇒W (r1, r2) =

∫∫
dridrjX(r1, ri)Y (ri, rj)Z(rj , r2).

Note that G, Q, V etc. are symmetric.

8.2 Two useful integrals

Here, I present two useful analytic integrals involving Feynman
Green’s functions. These are evaluated analytically by extend-
ing the integral over the complex plane. As a reminder, Cauchy’s
integral formula is ∮

dz
f(z)

z − a
= 2πif(a).

The first integral22∫
dω

2π
Ĝ12(εi + ω)Ĝ34(εj + ω) (127)

=
∑
abnm

∫
dω

2π

( |a⟩1⟨a|2
εi + ω − εa − iδ

+
|n⟩1⟨n|2

εi + ω − εn + iδ

)
×
( |b⟩3⟨b|4
εj + ω − εb − iδ

+
|m⟩3⟨m|4

εj + ω − εm + iδ

)
, (128)

can be expanded to four seperate terms, each with a pair of
poles. Consider the first (“a, b”) term of (128):∫

dω

2π

( |a⟩⟨a|
εi + ω − εa − iδ

)( |b⟩⟨b|
εj + ω − εb − iδ

)
, (129)

which has poles at ω = εa/b − ϵi/j + iδ. By closing the contour
in the lower complex plane (Fig. 6, left), it is seen the integral is
zero. The same is found for the last (“n,m”) term by closing in
the upper plane. The other two terms are non-zero, and can be
evaluated by closing in (e.g.) the upper plane; an example for
the “a,m” term with pole at ω = εa − εi + iδ is given in Fig. 6
(right). Together, this gives the final expression:23∫

dω

2π
Ĝ12(εi + ω)Ĝ34(εj + ω)

= i
∑
an

[ |a⟩1⟨a|2 |n⟩3⟨n|4
εj − εi + εa − εn

+
|n⟩1⟨n|2 |a⟩3⟨a|4
εi − εj + εa − εn

]
. (130)

The second integral is found in the same way:∫
dω

2π
Ĝ12(εi + ω)Ĝ34(εj − ω)

= i
∑
abnm

[ |a⟩1⟨a|2 |b⟩3⟨b|4
εi + εj − εa − εb

− |n⟩1⟨n|2 |m⟩3⟨m|4
εi + εj − εm − εn

]
.

(131)
22Note |G(ω)| → 0 as |ω| → ∞ (ω ∈ C); see Eq. (120).
23I renamed m = n in the first term, and b = a in the second.
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Figure 6: Contours for the “a, b” and “a,m” terms of Eq. (128).
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Figure 7: Second-order direct (1) and exchange (2) correlation di-
agrams in the Feynman technique. The straight lines represent
Hartree-Fock (bound-electron) Green’s functions (120), the wavy
photon lines represent the (non-relativistic) Coulomb operator (126).

8.3 Feynman method for second-order correlations

The second-order correlation corrections are given by the dia-
grams presented in Fig. 7. The electron loop in Fig. 7 (1) may
be written in terms of the polarisation operator:

Π̂12(ω) ≡
∫

dε′

2π
Ĝ12(ε

′)Ĝ21(ω + ε′). (132)

Note that this is a (largely) non-relativistic many-body prob-
lem; the polarisation is of the atomic core, not the vacuum,
and relativistic corrections to the Coulomb operator can be ex-
cluded (see Breit and QED corrections discussed later). In this
formalism, Feynman diagrams carry a phase factor of [27]

iNQ(−1)Nl , (133)

where NQ is the number of Coulomb (wavy) lines, and Nl is the
number of closed loops.

Using Eq. (130), the integral over frequencies in the polarisa-
tion operator can be performed analytically, yielding:

Π̂(ω) = i
∑
an

[ |a⟩2⟨a|1 |n⟩1⟨n|2
εa − ω − εn

+
|n⟩2⟨n|1 |a⟩1⟨a|2
εa + ω − εn

]
, (134)

which can be further simplified to:

Π̂(ω) = i
∑
a

|a⟩
[
Ĝex(εa − ω) + Ĝex(εa + ω)

]
⟨a|. (135)

Here, Ĝex ≡ Ĝ − Ĝcore only includes excited orbitals, and may
be formed without the use of a basis using Eqs. (124) and (120),
so long as the core orbitals are known. It is more numerically
stable to calculate it as:

Ĝex = Ĝ−
core∑
a

|a⟩⟨a|Ĝ. (136)

With these, the direct (d) and exchange (x) correlation po-
tentials can be expressed in the Feynman approach as

Σ̂
(2)
d =

∫∫
d3rid

3rj

∫
dω

2π
Ĝ12(ε+ ω)Q̂1iΠ̂ij(ω)Q̂j2, (137)

and

Σ̂(2)
x = −

∫∫
d3rid

3rj

∫∫
dω1

2π

dω2

2π

Ĝ1i(ε+ ω1)Q̂1jĜij(ε+ ω1 + ω2)Q̂i2Ĝj2(ε+ ω2). (138)

Table 5: Expectation values of the direct part of the correlation po-
tential ⟨v|Σd|v⟩ for the lowest valence states of Cs (atomic units).
The first four rows correspond to the second-order Goldstone tech-
nique using various number of states in the MBPT expansion, and
the fifth row is the second-order Feynman technique. The final two
rows are the screening and hole-particle corrections (see below).

6s1/2 6p1/2 6p3/2 5d3/2 5d5/2
30spdfghi -0.01906 -0.00771 -0.00693 -0.01226 -0.01182
40spdfghi -0.01915 -0.00768 -0.00690 -0.01228 -0.01182
50spdfghi -0.01919 -0.00769 -0.00691 -0.01230 -0.01184
60spdfghi -0.01920 -0.00769 -0.00691 -0.01230 -0.01184

Feynman -0.01920 -0.00766 -0.00689 -0.01236 -0.01190

δScreen 0.00631 0.00246 0.00221 0.00331 0.00313
δh-p -0.00769 -0.00359 -0.00322 -0.00477 -0.00457

The signs are due to Eq. (133). In the Feynman technique, as
compared to the Goldstone technique, we avoid the need for a
summation over the complete set of states, but instead require
integration over frequencies. Note that Σ = Σd+Σx is also called
the self-energy operator. Comparison between the Feynman and
Goldstone corrections shown in Table 5. Note that the Feynman
direct diagram is calculated much faster than the Goldstone one
when a large basis is required

8.4 Feynman to Goldstone transformation

Here, we show the connection between the Feynman and Gold-
stone approaches, by demonstrating the Feynman expressions
reduce to the Goldstone ones by integration over frequencies.

Inserting (135) into the direct term (137), we get

Σ
(2)
d = i

∫∫
d3rid

3rj

∫
dω

2π
Ĝ12(ε+ ω)Q̂1iQ̂j2

×
∑
a

(
|a⟩2⟨a|1Ĝex

12(εa − ω) + |a⟩1⟨a|2Ĝex
21(εa + ω)

)
. (139)

The two required frequency integrals:∫
dω

2π
Ĝ12(ε+ ω)Ĝex

ij (εa − ω) = −i
∑
nm

|n⟩1⟨n|2 |m⟩i⟨m|j
ε+ εa − εm − εn

,∫
dω

2π
Ĝ12(ε+ ω)Ĝex

ji (εa + ω) = −i
∑
bn

|b⟩1⟨b|2 |n⟩j⟨n|i
ε− εa − εb + εn

,

(140)

are evaluated using Eqs. (131) and (130), respectively, noting
that only the excited states appear in the expansion for Gex.
Bringing these together, and evaluating the direct matrix ele-
ment (using notation |ab⟩12 = |a⟩1|b⟩2), we have:

δεdv = ⟨v|Σ(2)
d |v⟩

=
∑
anm

⟨va|Q|nm⟩⟨mn|Q|av⟩
ε+ εa − εm − εn

+
∑
abn

⟨vn|Q|ba⟩⟨ab|Q|nv⟩
ε− εa − εb + εn

=
∑
anm

gvanmgmnav

ε+ εa − εm − εn
+
∑
abn

gvnbagabnv
ε− εa − εb + εn

, (141)

which is the expression from Goldstone diagrams (a) and (c).
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For the exchange term, we first integrate over ω1, with:∫
dω1

2π
Ĝ1i(ε+ ω1)Ĝij(ε+ ω1 + ω2)

= i
∑
an

( |a⟩1⟨a|i|n⟩i⟨n|j
ω2 + εa − εn

+
|n⟩1⟨n|i|a⟩i⟨a|j
−ω2 + εa − εn

)
= i
∑
a

[
|a⟩1⟨a|i Ĝex

ij (εa + ω2) + Ĝex
1i (εa − ω2) |a⟩i⟨a|j

]
(142)

≡ i Γ̂1iij(ω2) (143)

which was evaluated using Eq. (130). The Γ1iij term is de-
fined for notational brevity; note the similarity+difference to
Πij . This leads to two seperate integrals over ω2:∫

dω2

2π
Ĝex

ij (εa + ω2)Ĝj2(ε+ ω2) = i
∑
bn

|n⟩i⟨n|j |b⟩j⟨b|2
εa − ε+ εb − εn

,∫
dω2

2π
Ĝex

1i (εa − ω2)Ĝj2(ε+ ω2) = i
∑
nm

|m⟩1⟨m|i|n⟩j⟨n|2
εm + εn − ε− εa

,

(144)

which were evaluated using Eqs. (130) and (131), respectively.
Finally, combining all the terms, we have:

δεxv = ⟨v|Σ(2)
x |v⟩

= −
∑
abn

⟨vn|Q|ab⟩⟨ab|Q|vn⟩
ε− εa − εb + εn

−
∑
anm

⟨va|Q|mn⟩⟨mn|Q|av⟩
ε+ εa − εm − εn

= −
∑
anm

gvnabgabvn
ε− εa − εb + εn

−
∑
abn

gvmangmnav

ε+ εa − εm − εn
, (145)

which is exactly the expression from Goldstone diagrams (d)
and (b), respectively (note that gijkl = gjilk).

8.5 Angular separation

Using the same angular identities used for the Goldstone case:∑
mi,j,k,l

gijkl glkji =
∑
µ

1

[µ]

(
Cµ

ikC
µ
jlR

µ
ijkl

)2
(146)

∑
mi,j,k,l

gijkl gklji =
∑
µλ

(−1)µ+λ+1 Cµ
ikC

µ
jlC

λ
ilC

λ
jk

×
{
ji jk µ
jj jl λ

}
Rµ

ijklR
λ
ijlk (147)

=
∑
µλ

(−1)µ+λ+1 Lµλ
ijklR

µ
ijklR

λ
ijlk, (148)

where Lkλ
ijkl is defined for convenience in the last line, the corre-

lation potential (for angular state κv) can be written:

Σ
(κv)
12,d =

∫
dω

2π

∑
k

(κ)∑
α

(Ck
vα)

2

[jv]
gα12(ε+ ω)

∑
ij

q̂k1i π̂
k
ij(ω) q̂

k
j2,

(149)

Σ
(κv)
12,x =

∫∫
dω1

2π

dω2

2π

∑
kλ

(−1)k+λ

[jv]

(κ)∑
α,β,γ

Lkλ
vβαγ

×
∑
ij

gα1i(ε+ ω1) q̂
k
1j g

β
ij(ε+ ω1 + ω2) q̂

λ
i2 g

γ
j2(ε+ ω2). (150)

Here, the k and λ sums are over Coulomb multipolarities, and
the (κ = α, β, γ) sum is over angular quantum numbers (partial
waves). In theory, the k and κ sums are infinite; in practice
one (or both) must be truncated. The ij sum is the finite-grid

|Δϵ|
| |

-|Δϵ|
|
ϵ0

Re(ω)

Im(ω)

→
|Δϵ|

| |
-|Δϵ|

|
ϵ0

Re(ω)

Im(ω)

Figure 8: Rotation of the contour for integrals in the form of
Eq. (155). Dots represent Green’s function poles, crosses are po-
larisation operator poles (only bound-state poles are shown, there
are also continuum-state poles at larger |ω|), ε0 is the energy of the
deepest core state, and |∆ε| is the energy gap between the core and
excited bound states.

implementation of radial integrals; the integration measures are
included in qij .
The radial Green’s function is

gα12(ε) =

κα∑
n

Fnα(r1)F
†
nα(r2)

ε− εnα
=
χα
0 (r<)χ

α
∞(r>)

w
, (151)

where the sum runs over all orbitals with κ = κα, and the χ are
solutions to the radial Dirac equation with κ = κα. As described
above, g should be corrected to account for exchange, with

V
(κv)
x,12 =

−1

[jv]

core∑
a

∑
λ

(Cλ
av)

2Fa(r1)F
†
a (r2)q̂

λ
12. (152)

The radial Coulomb operator is (see Laplace expansion)

q̂kij =
rk<
rk+1
>

dridrj , (153)

and the radial polarisation operator is

πk
12(ω) = i

core∑
a

pa12

(κ)∑
n

(Ck
an)

2

[k]

[
gex,n12 (εa−ω)+gex,n12 (εa+ω)

]
,

(154)

where
paij = Fa(ri)F

†
a (rj)

is the (radial) projection operator onto single core state a.

8.6 Numerical frequency integration

The direct and exchange potentials involve integrals of the form:∫
g(ε+ w)π(ω) . . .

dω

2π
. (155)

The integrand contains poles from the Green’s function at ω =
εn − ε− iδ and ω = εa − ε+ iδ, and poles from the polarisation
operator at ω = εa − εn + iδ and ω = εn − εa − iδ. If ε is
the energy of the lowest excited state, then there are an infinite
number of poles from the polarisation operator in each of the
regions ω < −|∆ε|, and |∆ε| < ω < ∞, where ∆ε is the energy
gap between the highest core and lowest excited states (for Cs,
|∆ε| ≈ 0.7 au). From the Green’s function, there are a finite
number (equal to the number of core states) of poles in the
region −|ε0| < ω < −|∆ε|, and an infinite number of poles in
the region ω > 0 (see Fig. 8).
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+ + + ...

Figure 9: Screening of the Coulomb interaction: each Coulomb line
is replaced with this infinite series of screening diagrams.

If we were to evaluate the integral (155) numerically using a
semi-circle contour closed in the upper/lower-half of the com-
plex plain, it would involve evaluating the integrand arbitrarily
close to the poles, which is problematic. Instead, we rotate the
integration contour anti-clockwise by 90◦; the straight part of
the contour is at fixed Re(ω). This is shown in Fig. 8. It is
clear from Cauchy’s theorem that the integral over each of the
contours is the same and equal to the required integral (155).

Using the contour as shown in Fig. 8, the integral becomes

∫ ∞

−∞
g(ε+ ωr + iωi)π(ωr + iωi) . . .

dωi

2π
+
�
����*

0∮
curved

. . .. (156)

If the contour radius (i.e., maximum value of ωi) is large enough,
the value of the integrand around the curved part of the contour
≈ 0, so only the ωi integral needs to be evaluated. It is desirable
to place ωr, which remains constant throughout the integration,
as far away from the poles as possible. There is a region with
no poles between 0 and |∆ε|, so we take ωr ≃ −|∆ε|/2.

Finally, to perform the integrals numerically, we must evalu-
ate Green’s functions at complex frequency values: ω = ωr+iωi.
This can be done in analogy with Eq. (124):

g(ε+ ω) = [1 + iωig(ε+ ωr)]
−1
g(ε+ ωr) (157)

This g(ε+ω) will be a complex-valued matrix; g(ε+ωr) is real-
valued. The integration over ωi can then proceed using standard
numerical integration.

9 All-orders correlation potential

The three most important corrections beyond the second-order
correlation potential are: (i) the screening of the residual
Coulomb interaction by the core electrons [26], (ii) the hole-
particle interaction [28], and (iii) the chaining of the Σ opera-
tor [24, 25]. These effects are described by a series of diagrams
that can be summed exactly to all-orders using the Feynman
technique. The method described here was developed in the
above works, and may be called the Dzuba-Flambaum-Sushkov
(DFS) method; it is also called the perturbation theory in the
screened Coulomb interaction (PTSCI) method.

It is important to stress a key advantage of the current
method: its numerical efficiency. Using the Feynman approach
for the second-order (direct) diagrams takes roughly the same
computational power as using the Goldstone method (in fact,
it is a bit faster). Then, the inclusion of the all-orders screen-
ing and hole-particle interaction has effectively no impact on
the computer time required. That is, calculating the all-orders
correlation potential is roughly just as computationally inten-
sive as calculating the second-order corrections using the usual
(Goldstone) many-body approach. This is in stark contrast to
other methods (e.g., coupled-cluster), which require huge com-
putational resources for all-orders calculations. Further, our
method takes into account screening effects with double, triple,
quadruple, and higher core excitations, in contrast to all-order
coupled-cluster methods, which typically include only double
(and sometimes partial triple) excitations.

= + + + ...

Figure 10: Hole-particle corrections to the polarisation operator

9.1 Screening of the residual Coulomb interaction

The most important correction is the the screening of the resid-
ual Coulomb interaction by the core electrons, which can be
taken into account by a continued insertion of polarisation loops
into the Coulomb lines, as shown in Fig. 9. This chain of dia-
grams represent the matrix geometric series:

Q̃ ≡ Q̂+ Q̂(−i Π̂Q̂) + Q̂(−i Π̂Q̂)2 + . . . . (158)

Note that each additional ΠQ̂ term carries a factor of (−i) due
to Eq. (133). The series may be summed exactly as

Q̃(ω) = Q̂
[
1 + i Π̂(ω)Q̂

]−1

=
[
1 + i Q̂Π̂(ω)

]−1

Q̂. (159)

This is the screened Coulomb operator, and includes electron
screening to all-orders. This is enhanced by the number of elec-
trons in the outermost core shell, and the relatively small energy
denominator associated with their excitation, see Eq. (135). We

could also instead write the series (158) as QΠ̃Q, with

Π̃(ω) = Π̂(ω)
[
1 + i Q̂Π̂(ω)

]−1

=
[
1 + i Π̂(ω)Q̂

]−1

Π̂(ω). (160)

Inserting the screened Coulomb operator into Eqs. (137) and
(138) yields the new correlation potential:

Σd =

∫∫
d3rid

3rj

∫
dω

2π
Ĝ12(ε+ ω)Q̂1iΠ̂ij(ω)Q̃j2(ω),

(161)

Σx = −
∫∫

d3rid
3rj

∫∫
dω1

2π

dω2

2π
×

Ĝ1i(ε+ ω1)Q̃1j(ω1)Ĝij(ε+ ω1 + ω2)Q̃i2(ω2)Ĝj2(ε+ ω2),
(162)

which includes screening to all-orders. Note that the screened
operator should replace only a single Coulomb line in the direct
diagram, but both in the exchange diagram.

Note that this method takes into account screening diagrams
with double, triple, quadruple, and higher core electron exci-
tations. This is because the Feynman diagram technique con-
tains all possible time orderings of the polarisation loops; there-
fore the screening diagrams contain any number of excited elec-
trons [26]. This is in contrast to the widely-used “singles-doubles
coupled-cluster method”, where only double excitations are con-
sidered (and sometimes a selection of important triple excita-
tions). There are, however, some perturbation-theory diagrams
included in the coupled-cluster methods that are not included
in our approach. The most important of which (the so-called
ladder diagrams) are very small, and can be included into our
method by means of the method presented in Ref. [30].

9.2 Hole-particle interaction

The chain of diagrams corresponding to the hole-particle inter-
action is shown in Fig. 10. Physically, this effect arises due to
the deviation of the (direct) Hartree-Fock potential for the ex-
cited core electron in the polarisation loop from that for the
non-excited one [28]. In other words, it corresponds to an alter-
ation of the core potential due to the excitation of the particle
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= +
+ + ...

Figure 11: All-order screening of the Coulomb operator including
the hole-particle interaction.

from the core to the virtual intermediate state; the excited core
particle in the polarisation loop moves in the field of N−2 other
core electrons instead of the usual V N−1 potential.
In practical Hartree-Fock calculations for occupied core

states, the self-interaction term is included in the direct poten-
tial; this is then exactly compensated by the corresponding term
in the exchange potential. However, for the state excited from
the core (a†naa|0⟩), no such cancellation occurs. Therefore, the
self-interaction term should be removed for the excited states.

Following the approach from Ref. [28], the potential that si-
multaneously describes the occupied core and excited states is

V̂ = V N−1 − (1− P̂core)V0(1− P̂core), (163)

where

P̂core =

core∑
a

|a⟩⟨a| (164)

is the operator of projection onto the core, and V0 is the self-
interaction part of the Hartree-Fock potential for the outgoing
electron:

V a
0 (r) = y0aa(r)−

even∑
k

(Ck
aa)

2

[ja]2
ykaa(r) (165)

We use Eq. (163) since the Green’s function contains both core
and excited electrons [see Eq. (120)]; P̂ is introduced to ensure
orthogonality of the orbitals. The Gex function that appears
in the polarisation operator is then formed as Eq. (136). Note
that ⟨V ⟩ = ⟨V N−1⟩ for the occupied core states, and ⟨V ⟩ =
⟨V N−1⟩ − ⟨V0⟩ for the excited states. In this method, we do
not calculate the hole-particle diagrams directly. We calculate
the Green’s function using the potential in Eq. (163), and use it
to form the polarisation operator. This corrected polarisation
operator includes the dominating hole-particle effects.

We may include the “corrected” polarisation operator in
place of the regular polarisation operator when calculating the
screened Coulomb line, as shown in Fig. 11. Inserting the cor-
rected polarisation loop, and the screened Coulomb lines into
the diagrams for the correlation potential, we obtain an expres-
sion for the all-order correlation potential as shown in Fig. 12.

9.3 Self-energy chaining

The “chaining” of the correlation potential (iteration of Σ) is
shown in Fig. 13. This is accounted for automatically by in-
cluding Σ into the Hartree-Fock iterations for the valence or-
bital (correlation potential method, as described previously).
This is an important effect that includes terms with excitations
of the external valence electron, and is enhanced due to the
small energy denominator associated with this excitation. Be-
cause the Hartree-Fock equations (with Σ) are iterated until
self-consistancy is reached, the chaining is included to all-orders.

9.4 Effective screening for exchange term

In the all-orders method, the frequency integrations can no
longer be performed analytically. This is fine for the direct

ε ε+ ω ε

ω ω

ε

ω1 ω2

ε

Figure 12: All-order correlation diagrams including the Coulomb
screening and hole-particle interaction.

potential, since it contains only a single integral (the frequency
integral inside the polarisation operator can be done analyti-
cally). The exchange potential, on the other hand, contains a
double integral over frequencies, which is numerically expensive.
The exchange contribution to the correlation potential is typ-

ically small compared to the direct potential, and the screening
is a small correction to this. Therefore, it seems reasonable to
approximately account for the screening in the exchange poten-
tial. This is done by introducing effective screening factors for
the Coulomb operator in the exchange potential: Q̃ ≈ fQ̂. In
practice, the Coulomb operator is expanded over multipolarities
Q̂ ∼∑k q̂

k (Laplace expansion, as discussed previously), and a
different screening factor is used for each multipolarity:

q̃k(ω) ≈ fkq̂
k. (166)

Note that the frequency dependence of fk has been neglected.
The screening factors are calculated by evaluating the direct

energy correction (for each k) with and without screening:

fk = ⟨v|Σ(screened),k
d |v⟩ / ⟨v|Σ(2),k

d |v⟩. (167)

Then, the frequency integrals for the exchange term can be car-
ried out analytically, and the exchange potential may be cal-
culated by summation over a complete set of states in exact
analogy to the Goldstone case, just with the extra k-dependent
factors. This greatly improves the efficiency of the exchange
part of the calculation, while still maintaining good accuracy.

The hole-particle interaction is not included in Σ for calcula-
tion of fk (hole-particle effect enters at third-order in the direct
diagrams, but only at fourth-order in exchange). However, this
means the hole-particle effect is not included into the exchange
diagrams at all, which in certain cases may be important. The
screening effect is also taken into account approximately, which
may also be important in some cases.

10 Structure radiation + renormalisation: Correla-
tion corrections to matrix elements24

By using Brueckner orbitals (correlation potential method) to
compute matrix elements and including core polarisation, the
dominating correlation corrections to matrix elements are in-
cluded automatically. However, effects that involve terms where
the external field acts inside the correlation diagrams – known
as structure radiation – cannot be included into the correlation
potential method, and must be considered separately [23, 31].

24Implemented in: /src/MBPT/StructureRad.hpp

Σ + Σ Σ + ...

Figure 13: Chaining of the correlation potential (self-energy); the
boxed Σ refers to the sum of diagrams in Fig. 12.
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v w
Σ

v w
Σ

v w
Σ

Figure 14: Correlation corrections to matrix elements: Σ represents
the correlation potential, and the dashed line is interaction with ex-
ternal field. The first two diagrams are included when Brueckner
orbitals are used to compute the matrix elements; the third diagram,
called structure radiation, is not.

This is illustrated in Fig. 14. In total, there are 36 such dia-
grams; 9 for each of the four second-order diagrams in Fig. 5.
At the same level there enters another correction, known as
normalisation of states, that also cannot be included into the
correlation potential method. It arises due to the change of the
normalisation of the wavefunctions due to configuration mixing.
All these effects are suppressed compared to the Brueckner and
core-polarisation corrections (roughly) by the ratio of the core
excitation energy to that of the valence states.

Matrix elements of operator ĥ (rank k) are written [23, 31]:

⟨w|h|v⟩+ ⟨w|δhSR|v⟩+ ⟨w|δhNorm|v⟩. (168)

The normalisation contributions can be expressed

⟨w||δhNorm||v⟩ = −1

2
⟨w||h||v⟩ (Nw +Nv) , (169)

where (using the short-hand εij ≡ εi + εj)

Nv =
∑
amn

δΣvamn

εva − εmn
+
∑
abn

δΣvnab

εvn − εab
, (170)

with

δΣvijk =
∑
µ

1

[µ][jv]

(
Qµ

vijkW
µ
vijk

εvi − εjk

)
. (171)

Note that δΣ are just individual contributions to the second-
order energy shift, Eq. (112); see Ref. [23] for discussion.

The structure radiation terms are more complicated. Fol-
lowing Ref. [32], they can be broken into three groups of 12
diagrams: “top” (T ), “bottom” (B), and “centre” (C):

⟨w||δhSR||v⟩ = ⟨w||T ||v⟩+ ⟨w||B||v⟩+ ⟨w||C||v⟩.

Two examples are shown in Fig. 15. Expressions for these terms
were presented in Ref. [32]:

⟨w||T ||v⟩ =
∑
ar

⟨a||h||r⟩T k
wrva

εr − εa + ω
, (172)

⟨w||B||v⟩ =
∑
ar

⟨r||h||a⟩Bk
wavr

εr − εa − ω
, (173)

⟨w||C||v⟩ = −
∑
ab

⟨b||h||a⟩Ck
wavb −

∑
rn

⟨r||h||n⟩Dk
wnvr, (174)

where ω is the transition frequency, a, b, c, ... are states in the
core (holes), n,m, r, ... are virtual excited states, and w, v are
valence states. For diagonal matrix elements T = B.

v m w

n

a

r

v m w

rn

a

Figure 15: Example structure radiation diagrams, showing a “cen-
tre” (left) and “top” (right) diagram.

The T k terms are written as T = T 1 + T 2 + T 3 + T 4, with:25

T 1,k
wrvc =

∑
abµλ

(−1)v+r+a+b+k
{
w v k
λ µ b

}{
r c k
λ µ a

} Wµ
wrbaQ

λ
vabc

εwr − εba

T 2,k
wrvc =

∑
anµ

(−1)w−c+k+µ

[µ]

{
w v k
r c µ

} Wµ
wacnW

µ
varn

εrn − εva

T 3,k
wrvc =

∑
anµ

(−1)w−c+k+µ

[µ]

{
w v k
r c µ

} Wµ
wncaW

µ
vnra

εwn − εca

(175)

T 4,k
wrvc =

∑
mnµλ

(−1)v+r+n+m+k
{
w v k
λ µ n

}{
r c k
λ µ m

} Qµ
wrnmW

λ
vcnm

εnm − εvc
.

(T 1 and T 4 each correspond to two diagrams; T 2 and T 3 each
correspond to four). The B terms are similar:

Bk
wavr = (−1)v−w+a−r T k

vrwa. (176)

Finally, the centre C and D terms are:

Ck
wavc =

∑
bnµ

(−1)k+µ

[µ]

{
w v k
c a µ

} (−1)w−cWµ
wnabW

µ
vncb

(εwn − εab)(εvn − εbc)

+
∑

mnµλ

(−1)k
{
w v k
µ λ n

}{
c a k
λ µ m

} (−1)v+a+m+nQµ
vmncW

λ
wanm

(εwa − εnm)(εvc − εnm)

(177)

Dk
wrvm =

∑
nbµ

(−1)k+µ

[µ]

{
w v k
m r µ

} (−1)w−mWµ
wbrnW

µ
vbmn

(εwb − εrn)(εvb − εmn)

+
∑
abµλ

(−1)k
{
w v k
µ λ a

}{
m r k
λ µ b

} (−1)v+r+a+bQµ
vbamW

λ
wrab

(εwr − εab)(εvm − εab)
.

Note that the formula for Dk is the same as for Ck, except with
the internal sums over core and excited states swapped (i.e.,
b↔ a in the first term, and

∑
mn →∑

ab in the second.)
The dominating uncertainty for these corrections comes from

completeness of the basis. In particular, the structure radiation
terms involve matrix elements of ĥ between basis states (the
normalisation of states only contains matrix elements between
valence states). It is therefore a good test to perform the core-
polarisation calculations using both the TDHF (Sec. 6.3) and
diagram (Sec. 6.4) methods using the same basis as for structure
radiation, since the diagram RPA method also involves matrix
elements between basis states. If the TDHF and diagram core
polarisation calculations match, it is good indication that the
basis is sufficient to also describe the structure radiation.

11 Relativity beyond Dirac-Coulomb (Breit+QED)

The Dirac equation as presented in Eq. (49) accounts for
the relativistic motion of the electron in the Coulomb field

25Using notation εij ≡ εi+εj , and e.g., ‘a’ short for ja in 6j symbols and
phase factors, e.g., (−1)a+b ≡ (−1)ja+jb , while k,µ,λ are multipolarities.
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Table 6: Breit and QED corrections to the removal energies of the
lowest s and p states of Cs, as calculated at the Hartree-Fock and
Σ(2) levels (units: cm−1). First column (ε) shows energy without
QED or Breit. The Breit corrections at the HF level agree exactly
with Derevianko [33].

δQED δBreit

ε (Σ(2)) HF Σ(2) HF Σ(2) Ref. [33]

6s1/2 32412.1 −16.0 −23.7 −3.2 2.9 2.6
7s1/2 13023.0 −4.3 −5.2 −1.1 −0.1 0.3
6p1/2 20537.8 0.8 1.1 −7.5 −7.3 −7.1
7p1/2 9710.0 0.3 0.4 −2.7 −2.6 −2.5
6p3/2 19939.2 0.1 0.0 −2.9 −0.6 −0.8
7p3/2 9520.5 0.0 0.0 −1.0 −0.4 −0.4

Table 7: QED corrections to the electric dipole (E1) reduced matrix
elements of lowest s and p states of Cs at the HF, RPA, and Σ(2)

levels (units: aB). First column shows E1 (absolute value) at the
RPA+Σ(2) level, without QED (or Breit).

δ QED

|E1| HF RPA RPA+Σ(2)

6p1/2–6s1/2 4.3874 0.0033 0.0033 0.0035
7p1/2–6s1/2 0.3001 −0.0025 −0.0024 −0.0023
6p3/2–6s1/2 6.1698 0.0048 0.0049 0.0052
7p3/2–6s1/2 0.6056 −0.0029 −0.0028 −0.0025
7p1/2–7s1/2 10.178 0.0069 0.0069 0.0072
7p3/2–7s1/2 14.123 0.0099 0.0099 0.0103
7s1/2–6p1/2 4.2241 −0.0046 −0.0044 −0.0045
7s1/2–6p3/2 6.4705 −0.0058 −0.0056 −0.0054

of the nucleus, however, it treats the Coulomb field classi-
cally, and treats the electron-electron Coulomb repulsion non-
relativistically (see, e.g., Ref. [3]). For high-accuracy calcula-
tions, and particularly for atoms with large Z, corrections due
to the missing relativistic effects become important (∼ 0.1 – 1%).
The two corrections considered here are the Breit interaction,
which contains the dominating relativistic corrections to the
electron-electron Coulomb interaction, and the radiative quan-
tum electrodynamics (QED) corrections, which are accounted
for via the Ginges-Flambaum radiative potential method.

Our Breit corrections are compared against those calculated
by Derevianko in Ref. [33]. There, it was demonstrated that the
interplay between the Breit effects and correlations were crucial
– even changing the sign of the Breit contribution in many cases.
Our Breit calculations agree perfectly with those of Ref. [33] at
the HF level, and agree very well including correlations. The
interplay between the QED and correlation corrections turns out
also to be important [34, 35], so for high-accuracy calculations,
the Breit and QED effects must be included together including
correlations.

Tables 6, 7, and 8 show the QED and Breit corrections to the
lowest s and p energies and E1 matrix elements at various levels
of approximation. The combination of correlation corrections
with the Breit and QED effects are important.

11.1 Breit interaction26

This section mostly follows Ref. [2]; see also [33, 36, 37]. The
Breit Hamiltonian accounts for magnetic interactions between
electrons (also known as the Gaunt interaction), and retardation
effects (see, e.g., [3]). It leads to a correction to the electron-

26Implemented in: /src/HF/Breit.hpp

Table 8: Breit corrections to the E1 reduced matrix elements of
s and p states of Cs at the HF, RPA, and Σ(2) levels (units: aB).
Corrections at the HF level agree near-perfectly with Derevianko [33].

δ Breit

|E1| HF RPA RPA+Σ(2) Ref. [33]

6p1/2–6s1/2 4.387 0.0004 0.0000 −0.0008 −0.0010
7p1/2–6s1/2 0.300 0.0018 0.0016 0.0017 0.0019
6p3/2–6s1/2 6.170 0.0008 0.0001 −0.0009 −0.0011
7p3/2–6s1/2 0.606 0.0006 0.0003 0.0002 0.0005
7p1/2–7s1/2 10.178 −0.0010 −0.0011 −0.0022 −0.0029
7p3/2–7s1/2 14.123 0.0008 0.0006 0.0004 −0.0013
7s1/2–6p1/2 4.224 0.0046 0.0045 0.0045 0.0049
7s1/2–6p3/2 6.471 0.0018 0.0018 0.0010 0.0016

electron Coulomb term in the many-body Hamiltonian (49):∑
ij

1

rij
→
∑
ij

(
1

rij
+ ĥBij

)
, (178)

where, in the limit of zero frequency, the two-particle Breit
Hamiltonian is

ĥBij = −αi ·αj + (αi · n̂ij)(αj · n̂ij)

2 rij
. (179)

Frequency-dependent effects can be neglected in most situations,
see, e.g., discussion in Refs. [2, 3].
We follow Ref. [37], and express the angular reduction for the

two-particle Breit integrals in the same way as for the Coulomb
interaction:

babcd = ⟨ab|b̂|cd⟩ = Ak
abcdB

k
abcd

where Ak
abcd is the same angular coefficient as in the regular

Coulomb case [see Eq. (34) in the appendix]. The “reduced”
Breit integrals, Bk, are analogous to the Qk integrals of the
Coulomb interaction, though do not contain all the same sym-
metries. Our definition of Bk differs by a factor of ±1 compared
to Ref. [37], in order to be consistent with our Qk definition.

In analogy with the Coulomb case, we express this as

Bk
abcd = (−1)k+|ja−jb|

[
Ck

acC
k
bd

(
mk

abcd + okabcd + pkabcd
)

+ Ck
−a,cC

k
−b,dn

k
abcd

]
, (180)

where m,n are due to the magnetic (Gaunt) effects, o, p are
due to retardation, and Ck

−b,a ≡ ⟨−κb||Ck||κa⟩. The lower-case

integrals (e.g., mk
abcd) may be called the Breit radial integrals,

and are somewhat analogous to Rk
abcd, though they also depend

on angular quantum numbers κ (but not projections). The Bk

integrals have similar symmetries as the W k Coulomb integrals:

Bk
abcd = Bk

badc = Bk
cdab = Bk

dcba, (181)

with the extra symmetry:

Bk
cbad = (−1)la+lc+k+1Bk

abcd (182)

(the m, o, p parts are anti-symmetric under a↔ c, while the n
is symmetric). Note also the the n part has the opposite parity
selection rule to the other terms, and to the regular Coulomb
integrals.

The complete equations are substantially more cumbersome
than for the Coulomb case. We follow Ref. [37] and introduce:

P k
ij(r) =

∆ij

k
Xij(r)− Yij(r) = −P k

ji(r)

Qk
ij(r) =

∆ij

k + 1
Xij(r) + Yij(r) = −Qk

ji(r),

(183)

18



ampsci: Method B. M. Roberts – July 2024

where ∆ij ≡ κi − κj ,

Xij(r) = F †
i θ̂xFj = fi(r)gj(r) + gi(r)fj(r) = Xji

Yij(r) = F †
i θ̂yFj = fi(r)gj(r)− gi(r)fj(r) = −Yji,

(184)

and

θ̂x =

(
0 1
1 0

)
, θ̂y =

(
0 1
−1 0

)
. (185)

For numerical simplicity, in the code we define the functions:

gkij(r) =

∫ ∞

0

q̂kXij(r
′) dr′ (186)

bkij(r) =

∫ ∞

0

q̂kYij(r
′) dr′, (187)

with

gk(r1) =

∫ r1

0

rk2
rk+1
1

Xij(r2) dr2 +

∫ ∞

r1

rk1
rk+1
2

Xij(r2)dr2

= g0,k(r1) + g∞,k(r1). (188)

We also introduce notation for the integrals:

skabcd =

∫∫
dr1dr2 q

k+1Qk
ac(r1)Q

k
bd(r2)

tkabcd =

∫∫
dr1dr2 q

k−1P k
ac(r1)P

k
bd(r2)

ukabcd =

∫∫
dr1dr2 q

kXac(r1)Xbd(r2)

vkabcd =

∫ ∞

0

dr1

∫ r1

0

dr2 (q
k−1 − qk+1)Qk

ac(r1)P
k
bd(r2)

+

∫ ∞

0

dr1

∫ ∞

r1

dr2 (q
k−1 − qk+1)P k

ac(r1)Q
k
bd(r2),

(189)

where qk ≡ rk<
rk+1
>

is the (radial) two-body Coulomb operator.

With these definitions, we can write [2, 37]:

mk
abcd =

k + 1

2k + 3
skabcd +

k

2k − 1
tkabcd

nkabcd = − (κa + κc)(κb + κd)

k(k + 1)
ukabcd (190)

okabcd = − (k + 1)2

(2k + 1)(2k + 3)
skabcd −

k2

(2k + 1)(2k − 1)
tkabcd

pkabcd = − k(k + 1)

2(2k + 1)
vkabcd.

For including Breit into HF or TDHF equations, it is con-
venient to define the effective one-body Breit operators, which
may be called “Breit screening functions” in analogy with ykbd(r).
For example,

(a|sk(ac)bd |c) ≡
∫
F †
a (r)s

k(ac)
bd (r)Fc(r) dr ≡ skabcd.

The same definitions may be used to define m
k(ac)
bd , etc. With

these, we can finally write:

s
k(ac)
bd =

(
∆bd

k + 1
gk+1
bd + bk+1

bd

)[
∆ac

k + 1
θx + θy

]
t
k(ac)
bd =

(
∆bd

k
gk−1
bd − bk−1

bd

)[
∆ac

k
θx − θy

]
u
k(ac)
bd = gkbd(r) θx

v
k(ac)
bd =

(
∆bd

k
[g0,k−1

bd − g0,k+1
bd ]− b0,k−1

bd + b0,k+1
bd

)[
∆ac

k + 1
θx + θy

]

+

(
∆bd

k + 1
[g∞,k−1

bd − g∞,k+1
bd ] + b∞,k−1

bd − b∞,k+1
bd

)[
∆ac

k
θx − θy

]
.

(191)

Inclusion of the Breit Hamiltonian into the Hartree-Fock
equations [33] leads to a correction to the HF potential (52):

V̂HF → V̂HF + B̂HF. (192)

Inclusion into the Hartree-Fock and TDHF equations allows for
the inclusion of Breit effects into the calculations of atomic en-
ergies and wavefunctions. Since the Breit potential depends on
the core orbitals, an extra term now also appears in the TDHF
equations:

δV → δVHF(δϕ) + δVB(δϕ), (193)

which in fact gives the dominant Breit correction to matrix el-
ements in many cases.

The Breit contribution to the Hartree-Fock potential correc-
tion can be found simply in analogy with Eq. (54):

B̂HFFi(r) =
−1

[ji]

core∑
b

∑
k

[
(Ck

bi)
2
(
m

k(ib)
bi + o

k(ib)
bi + p

k(ib)
bi

)
+(Ck

−b,i)
2n

k(ib)
bi

]
Fb(r).

(194)

Note that the direct Breit contribution is zero; only the exchange
term survives. The equation for δVB(δϕ) is not given explicitly
here, but can be found by making the similar substitution in
Eq. (102). Note that while no direct Breit term appears in the
HF equations, it does enter into δVB.
Note that, at the moment, the Breit interaction cannot be

included into the electron Green’s function, required to com-
pute the all-orders correlation potential. Therefore, the Breit
effect must be computed only at the second order of MBPT.
(This is not a fundamental limitation, in theory Breit can be
included into the Green’s function, it just isn’t implemented as
of now). Further, we do not include the Breit correction to the
Coulomb interaction inside the MBPT diragrams; this affect is
very small [33]. It is, however, important to include the Breit
interaction into the Hamiltonian used to create the spline basis
states (which are used to construct the MBPT diagrams), since
these states must be orthogonal to the Hartree-Fock core.

11.2 Radiative QED corrections27

Radiative QED corrections can be included into the wavefunc-
tions using the radiative potential method developed in Ref. [38],
including the (small) finite nuclear size corrections [34, 35]. In
this method, an effective potential, Vrad, is added to the Hamil-
tonian before the equations are solved. The potential can be
written as the sum of the Uehling (vacuum polarisation) and

27Functions defined in: /src/Physics/RadiativePotential.hpp
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v v v v

Figure 16: Vacuum polarisation (left) and self-energy (right) dia-
grams. In the radiative potential method, the self-energy diagram is
replaced with an effective local potential [38].

self-energy potentials, see Fig. 16. The self-energy potential it-
self is written as the sum of the high- and low-frequency electric
contributions, and the magnetic contribution:

Vrad(r) = VUeh(r) + V h
SE(r) + V l

SE(r) + V mag
SE (r). (195)

Including this potential into the Hartree-Fock equations (in-
stead of adding it as a subsequent perturbation) gives an im-
portant contribution (core relaxation), especially for states with
l > 0. The first three (electric) terms on the RHS of Eq. (195),

V el(r) = VUeh(r) + V h
SE(r) + V l

SE(r), (196)

are simple scalar terms, and can be included into the calcula-
tions simply (e.g., by adding them to the nuclear potential).
The final (magnetic) term, which can be expressed as [35]

V mag
SE (r) = i(γ · n)Hmag(r), (197)

leads to off-diagonal terms in the Hamiltonian. Together, they
can be included via additions to the radial derivative (12):

∂rF =
1

c

(
(−cκ/r +Hmag) (ε− V̂ + V el + 2c2)

−(ε− V̂ + V el) (cκ/r −Hmag)

)
F. (198)

The sign convention here for Vrad (i.e., with Ĥ → Ĥ − Vrad) is
from Ref. [38].

Detailed expressions for the individual contributions to Vrad
are given in Refs. [34, 35, 38]28 – they involve some rather nasty
integrals that must be evaluated carefully. For the Uehling po-
tential (with ρ = r/λ̄c and ρn = rN/λ̄c)

29 we have:

VUeh(r) =
Zα

3π r

∞∫
1

dt

√
t2 − 1

t4
(
2t2 + 1

)
e−2tρGUeh(r, t), (199)

where rN is the nuclear radius (rN =
√

5/3rrms) and

GUeh(r, t) ={
3 (2tρn)

−3
[(2tρn) cosh(2tρn)− sinh(2tρn)] r ≥ rn

3 (2tρn)
−3
e2tρ

[
2tρ− e−2tρn(1 + 2tρn) sinh(2tρ)

]
r < rn.

(200)

Note that GUeh → 1 as rN → 0.
For the electric self-energy potential, we have

V l
SE(r) = −Bl(Z)Z

4α3F l
SE(r) (201)

where, with ξ(x) ≡ (x+ 1)e−x,

F l
SE(r) =

3

2rr3NZ
2

∫ rN

0

r′ [ξ(Z|r − r′|)− ξ(Z(r + r′))] dr′.

(202)

28Note: there is a small typo in Eq. (14) of Ref. [35] (V step
high ); the r ≤ rN

and r > rN terms should be swapped.
29λ̄c is electron (reduced) Compton wavelength. Atomic units: λ̄c = α.

Note that F l
SE(r) = e−Zr/aB as rN → 0. And:

V h
SE(r) = −Al(Z)

Zα

πr

∫ ∞

1

dt I1(t, Z)

×
[
e−2tρGUeh(r, t)− I2(r, t, Z)

]
, (203)

where GUeh is the same as from the Uehling potential,

I1(r, t, Z) =
1√
t2 − 1

{
1

t2
− 3

2

+

(
1− 1

2t2

)[
ln(t2 − 1) + 4 ln

(
(Zα)−1 +

1

2

)]}
, (204)

and

I2(r, t, Z) =
3rA
2r3N

∫ rN

0

r′
[
E1 ([|r − r′|+ rA]2t/λ̄c)−

E1 ([r + r′ + rA]2t/λ̄c)
]
dr′, (205)

E1 is the exponential integral, and rA ≡ 0.07Z2α3. Here, Al

and Bl are order-1 fitting factors, taken from Ref. [35]. Note
that I2 → e−2tρrA/[r/aB + rA] as rN → 0.

Finally for the magnetic form factor:

Hmag(r) =
Zα2

4πr2

∞∫
1

dt
1

t2
√
t2 − 1

×
[
(1 + 2tη)e−2tρGmag(r, t)− (χ/ρn)

3
]
, (206)

where η = max(ρ, ρn), χ = min(ρ, ρn), and

Gmag =
3

(2tρn)3

(
e2t(ρ−η) [2tχ cosh(2tχ)− sinh(2tχ)]

)
. (207)

Note that Gmag → 1 as Rn → 0.

12 Configuration Interaction

In this section, we detail the method used for multi-valence elec-
tron atoms. We focus on the case of two-valence systems, but
the general method works for any system. We use the com-
bined Configuration Interaction with Many-Body Perturbation
Theory (CI+MBPT) method, which was first introduced in
Ref. [39]; see also Refs. [14, 39–43].
In the CI+MBPT method, valence-valence correlations are

treated with high accuracy using the CI method, and core-
valence correlations are treated using perturbation theory. Since
the core excitation energies are much larger than valence excita-
tions, this method has the potential to be highly accurate while
maintaining good numerical efficiency.

12.1 CI Hamiltonian

We may first break the total Hamiltonian into parts contain-
ing only core-electron terms, valence electron terms (including
the valence-valence Coulomb interaction), and the core-valence
interaction potential:

H = Hc +Hv + Vcv (208)

The core-valence interaction is obviously not small. However,
the dominant part of this interaction can be described by the
Hartree-Fock potential due to the N −M core electrons:

Vcv =

M∑
i

V HF(ri) + δV, (209)
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where δV is (assumed to be) a small correction, which we shall
treat perturbatively. Excluding the perturbation, we thus define
the standard CI Hamiltonian for the valence space:

HCI = H1
CI +H2

CI =

M∑
i

hHF(ri) +
∑
i<j

r−1
ij , (210)

where the sums extend over only the electrons in the valence
subspace (the “active” CI space).

For accurate calculations, however, core-valence correlations
must be taken into account. This may be done by an expansion
of the perturbation potential Heff = HCI + δV :

δV ≈
∑
i

Σ1(ri) +
∑
i<j

Σ2(ri, rj), (211)

where Σ1 is the (non-local) one-body correlation potential which
accounts for the core-valence interactions, and Σ2 is the two-
body operator which accounts for the screening of the valence-
valence Coulomb interaction by the core electrons. These are to
be calculated using Many-Body Perturbation Theory; and will
be discussed below.

In the CI method, approximate valence-space wavefunc-
tions, Ψ, are expanded over M -particle wavefunctions called
Configuration-State Functions (CSFs), ψI :

|Ψ, JπJz⟩ =
∑
I

cI |I, JπJz⟩. (212)

The CSFs are combinations of Slater-determinants and will be
discussed below. The CSFs are eigenfunctions of J2, Jz, and
parity (π). Then, for each Jπ symmetry, the energies and
wavefunctions (expansion coefficients) are found by solving the
Schrödinger equation, which for a finite set of NCSF CSFs, is
cast to an N2

CSF eigenvalue problem:∑
J

cJ⟨I|Heff |J⟩ = EcI , (213)

where NCSF is the number of CSFs in the expansion (212). (We
generally don’t need to fully solve the eigenvalue problem, there
are efficient methods to approximately find just the lowest few
eigenvalues.) The accuracy of the method is controlled by where
the CI expansion is truncated (i.e., which CSFs we include in
the space), and by how many electron shells are considered to
be in the “valence” space.

The CSFs are themselves formed from combinations of M -
particle Slater determinants30 (sometimes called “projections”):

|I, JJz⟩ =
∑
{m}

d{m}|I, JJz, {m1,m2, . . .}⟩. (214)

These have definite angular momentum projections, mj , for
each of the M electrons that form the CSF; the set of ms have∑

imi = Jz, and
∑

{m} d
2
{m} = 1. Typically, CSFs Φ are formed

in the stretched state with Jz = J .
For two-particle states, d{m} are just the Clebsch-Gordon co-

efficients. For example, for configuration {nκ, n′κ′} (which has
parity π = (−1)l+l′),

|I, JπJ⟩ = η
∑
m

CJJ
j,m,j′,m′ |I, JπJ, {nκm, n′κ′m′}⟩, (215)

30If hole excitations are included into the CI space, the CSFs may be
M + 2Nh particle functions, where Nh is the number of hole-excitations
included. Hole excitations are not included in the CI expansion in AMPSCI,
rather they are accounted for using MBPT.

where m′ = J −m. The extra factor η is required when the two
electrons in the CSF are in the same (n,κ) orbital:

η =

{
1/
√
2 identical

1 otherwise
, (216)

and accounts for the fact that both cannot occupy the same m.
The single-particle basis states may be formed in a number

of ways. One choice is to use the set of eigenstates of the same
HF potential that appears in the CI (210). In this choice, the
Hartree-Fock potential is due to theN−M core electrons, and so
is called the V N−M approximation. The benefit of this method
is that the one-particle states are eigenstates of the one-particle
part of the CI Hamiltonian, and the many-body corrections be-
come simpler (as discussed below). The downside, however,
is that the the potential seen by the one-electron states is far
from realistic, meaning a larger number of CSFs are typically
required in the expansion. For few-valence systems, this is often
the best compromise. For many-valence systems, the CI part of
the problem becomes more important (compared to the MBPT
part), and so a more realistic initial potential should be used.

12.2 Angular separation

Since for two-particle CSFs, the angular linking the CSF to the
Slater determinants in Eq. (214) are just the Clebsch-Gordon
coefficients, the angular separation is particularly simple. Here,
I use the short-hand notation |V ⟩ for a two-electron CSF

|V ⟩ = ηvw
∑
{m}

CJJ
jv,mv,jw,mw

|{vw}⟩, (217)

(and similarly for |X⟩ = ...|{xy}⟩).
The first thing is to evaluate the matrix elements of the CI

Hamiltonian Eq. (210) between two CSFs of the same Jπ sym-
metry (ignoring the MBPT part for now). Considering the one-
body part of the Hamiltonian first (H1

CI), we have for the diag-
onal terms:

⟨V |H1
CI|V ⟩ = h1vv + h1ww, (218)

or more generally:

⟨X|H1
CI|V ⟩ = ηxyηvw

[
h1ywδxv + h1xvδyw

− (−1)J+v+w
(
h1yvδxw + h1xwδyv

) ]
. (219)

Note that, in the V N−M approximation, h1ij = εiδij . For the

two-body part H2
CI), we have:

⟨X|H2
CI|V ⟩ = ηxyηvw

∑
k

(−1)x+v+k ×({
x y J
w v k

}
(−1)JQk

xyvw +
{
x y J
v w k

}
Qk

xywv

)
. (220)

(Note, the formula looks cleaner if this is written terms of the
anti-symmetrised W k integral, though it is less efficient to com-
pute that way). To include the Breit interaction, we simply
replace Qk → Qk +Bk (180). By including Breit in the HF po-
tential, the Breit contribution to H1 is included automatically.

12.3 External fields and matrix elements

For a tensor operator, T k
q , we can write the reduced matrix

element as a sum over CSFs:

⟨ΨA||T k||ΨB⟩ =
∑
X,V

cXcV ⟨X||T k||V ⟩. (221)
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Figure 17: Matrix elements of the Σ2 operator – screening of the
valence-space Coulomb interaction by core electrons.

For two-particle states, the reduced matrix elements between
CSFs can be expressed [using the notation of (217)]

⟨X||T k||V ⟩ = (−1)kηxyηvw
√
[JX , JV ]×[

(−1)x+w+V
{
X V k
v x w

}
tkxvδyw

+ (−1)x+w
{
X V k
w x v

}
tkxwδyv

+ (−1)X+V+1
{
X V k
v y w

}
tkyvδxw

+ (−1)w+v+X
{
X V k
w y v

}
tkywδxv

]
. (222)

Core polarisation (RPA) can be taken into account in the usual
way, by modifying the single-particle matrix elements.

12.4 CI+MBPT

The δV terms in Eq. (211) correct the one- and two-particle
parts of the CI Hamiltonian (210) respectively. The one-particle
Σ1

vw operator is the same one that appears for one-valence sys-
tems, shown in Fig. 5, though we require the off-diagonal ele-
ments:

Σ1
vw =

∑
amn

gvamng̃nmaw

εwa − εmn
+
∑
abn

gvnabg̃banw
εwn − εab

. (223)

We have written the energy denominators directly as implied
by the Goldstone diagrams (RS perturbation theory). We shall
return to the question of the energy denominators soon. The
angular separation is exactly the same as in Eq. (112). We have
evaluate the matrix elements directly like this, or we may form
the correlation potential matrix as in Sec 7.1. All-orders screen-
ing and hole-particle interaction can also be simply included into
Σ1 by using the all-order correlation potential as described in
Sec. 9.
The two-body Σ2 operator corresponds to screening of the

valence-valence Coulomb interaction by the core electrons, as
shown in Fig. 17. The diagrams can be evaluated:

Σ2
vwxy =

gvnxag̃awny − gvnaxgawny

exa − εvn

+
gvaxng̃nway − gvanxgnway

eya − εwn

− gvnaygawxn

eya − εvn
− gvanygnwxa

exa − εwn
+
gvwabgabxy
εab − εvw

.

(224)

In the standard Rayleigh-Schrodinger (RS) perturbation the-
ory (as the above energy denominators are presented), the Σ ma-
trix elements, and hence the CI matrix, becomes non-symmetric.

In the Brillouin-Wigner (BW) formalism, the energy denomina-
tors instead depend on the whole energy of the atom. This
becomes Ecore + Eval, and the core part cancels. So the energy
denominators depend on the valence configuration. A good ap-
proximation is to use the single-particle energy of the leading
configuration.
For Σ1, this is as simple as replacing the valence energy

with the energy of the lowest valence state of the given single-
particle symmetry ew → ϵ̄κw

. For Σ2, we may also use this
approximation for all of the valence states. Or, we can make
the stronger approximation that the initial/final state ener-
gies are roughly the same (valid since the core-valence excita-
tion energy is large compared to the valence excitation energy),
εv − εx ≈ εw − εy ≈ 0.
The correlation diagrams have the same angular decomposi-

tion as the Coulomb integrals:

Σ2
vwxy =

∑
k

Ak
vwxyS

k
vwxy, (225)

where Sk is independent of magnetic quantum numbers. Note
that Sk has different selection rules and fewer symmetries than
Qk: Sk The explicit formulas can be constructed from:

g̃vnxag̃awny =
∑
k

Ak
vwxy

(−1)k

[k]
W k

vnxaW
k
awny, (226)

and

gvwabgabxy =
∑
k

Ak
vwxy

∑
µλ

(−1)v+w+x+y+a−b×

[k]
{
λ µ k
v x a

}{
λ µ k
w y b

}
Qµ

vwabQ
λ
abxy. (227)

A Appendix

Some useful equations and definitions are given here; see also Refs. [1,
2, 5, 8, 9, 44, 45]. Note that notation differs between all these sources,
I have introduced some notation not found in the above.

A.1 Many-body wavefunction (Slater determinant)

For a system of non-interaction particles, the many-body wavefunc-
tion may be written as a product state (independent particle picture).
If each single-particle wavefunction ψ obeys ĥψ = εψ, it clear, e.g.,
that a two-body product wavefunction ψa(r1)ψb(r2) satisfies the total
Hamiltonian:

[h(r1) + h(r2)]ψa(r1)ψb(r2) = [εa + εb]ψa(r1)ψb(r2). (A.1)

This remains true for states where each particle interacts with a
common field (e.g., h = h0 + V (r)), as is the basis for mean-field
approximations such as Hartree-Fock. For Fermions, the many-body
wavefunction must be anti-symmetric under the exchange of any two
particles, and must not allow any two particles to occupy the same
state. A two-particle state which satisfies this may be written

Ψab(r1, r2) =
1√
2
[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)] . (A.2)

More generally, an N -body wavefunction may be written in the form
of a determinant, known as a Slater determinant,

Ψab...n(r1, r2, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψa(r1) ψa(r2) . . . ψa(rN )
ψb(r1) ψb(r2) . . . ψb(rN )

...
...

. . .
...

ψn(r1) ψn(r2) . . . ψn(rN )

∣∣∣∣∣∣∣∣∣ (A.3)
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which is an eigenstate of the Hamiltonian

H =

N∑
i

h(ri).

Note that the determinant form encodes the Fermion antisymmetry
and exclusion principal.

The introduction of explicit interactions between particles [e.g.,
introducing V (r1, r2) into (A.1)] means the wavefunction cannot be
written exactly as a single Slater determinant. However, if the inter-
action terms can be made to be small (e.g., by good choice of mean
field), they may be treated perturbatively. The many-body wavefunc-
tion can be written as an expansion over Slater-determinant states
(many-body perturbation theory); see, e.g., [1, 2]. We will typically
refer to the single-particle wavefunctions, ψ, that make up the total
N -body Slater determinant, Ψ, as orbitals.

A.2 Matrix elements for many-body states

Let F and G be one- and two-particle operators

F̂ =
∑
i

f̂(ri) , Ĝ =
∑
i<j

ĝ(ri, rj), (A.4)

where f(ri) acts on the ith electron; g(ri, rj) acts on the pair of
electrons {i, j}. Here, I use the short-hand notation from Ref. [1]:

|Φn
i ⟩ = a†nai|Φ⟩,

with i, j denoting occupied states (core and valence), and m, n,
denoting unoccupied virtual excited states. |Φ⟩ is a many-body
Slater determinant wavefunction including the Hartree-Fock core and
the occupied valence states (e.g., we may have |Φ⟩ = a†v|0HF⟩), see
Ref. [1]. Then, we have for diagonal matrix elements:

⟨Φ|F |Φ⟩ =
∑
i

⟨i|f |i⟩ =
∑
i

fii

⟨Φ|G|Φ⟩ =
∑
i<j

(⟨ij|g|ij⟩ − ⟨ji|g|ij⟩) =
∑
i<j

(gijij − gjiij),
(A.5)

for matrix elements between states that differ by a single orbital:

⟨Φn
i |F |Φ⟩ = ⟨n|f |i⟩ = fni

⟨Φn
i |G|Φ⟩ =

∑
j

(⟨nj|g|ij⟩ − ⟨jn|g|ij⟩) =
∑
j

(gnjij − gjnij),
(A.6)

and for matrix elements between states that differ by two orbitals:

⟨Φnm
ij |F |Φ⟩ = 0

⟨Φnm
ij |G|Φ⟩ = ⟨nm|g|ij⟩ − ⟨mn|g|ij⟩ = gnmij − gmnij .

(A.7)

A.3 Wigner-Eckhardt theorem

For irreducible (spherical) tensor operator T k
q (q component of tensor

operator of rank k), the Wigner-Eckhardt theorem allows us to define
a reduced matrix element via:

⟨naκama|T k
q |nbκbmb⟩

= (−1)ja−ma

(
ja k jb

−ma q mb

)
⟨naκa||T k||nbκb⟩, (A.8)

where the reduced matrix element ⟨||T k||⟩ does not depend on mag-
netic quantum numbers, and (:::) is a 3j-symbol [8]. The reduced
matrix elements have symmetry relation:

⟨j||T k||j′⟩ = (−1)j−j′⟨j′||T k||j⟩∗, (A.9)

and obey summation relation:∑
ma,mb,q

|⟨naκama|T k
q |nbκbmb⟩|2 = |⟨naκa||T k||nbκb⟩|2. (A.10)

A.4 Angular identities

Clebsch-Gordon coefficients notation:

⟨j1m1, j2m2|JM⟩ ≡ (−1)j1−j2+M
√

[J ]
(
j1 j2 J
m1 m2 −M

)
(A.11)

≡ C(j1, j2, J ;m1,m2,M) (A.12)

≡ CJM
j1m1,j2m2

. (A.13)

|j1j2; JM⟩ =
∑

m1,m2

⟨j1m1, j2m2|JM⟩|j1m1⟩|j2m2⟩. (A.14)

Useful identities ∑
mb

gabab = [jb]R
0
abab. (A.15)

∑
mi,j,k,l

gijkl glkji =
∑
µ

1

[µ]

(
Cµ

ikC
µ
jlR

µ
ijkl

)2
(A.16)

=
∑
µ

1

[µ]

(
Qµ

ijkl

)2
(A.17)

∑
mi,j,k,l

gijkl gklji =
∑
µλ

(−1)µ+λ+1Cµ
ikC

µ
jlC

λ
ilC

λ
jk

×
{
ji jk µ
jj jl λ

}
Rµ

ijklR
λ
ijlk (A.18)

= −
∑
µ

1

[µ]
Qµ

ijklP
µ
ijkl (A.19)

∑
mrms

Aµ
mnrsA

λ
rsij =

∑
k

Ak
mnijA

kµλ
mnrsij (A.20)

∑
mrmc

Aµ
cnirA

λ
mrcj =

∑
k

(−1)k+µ+λAk
mnijA

kλµ
mjcrin, (A.21)

where

Akµλ ≡ (−1)m+n+r+s+i+j+1[k]
{
m i k
λ µ r

}{
n j k
λ µ s

}
, (A.22)

∑
jm

(2j + 1)
(
j1 j2 j
m1 m2 m

)(
j1 j2 j
m′

1 m
′
2 m

)
= δm1m

′
1
δm2m

′
2

∑
m1m2

(2j + 1)
(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m
′

)
= δjj′δmm′ (A.23)

∫
Yl′m′YlmYLM dΩ =

√
[l′][l][L]

4π

(
l′ l L
0 0 0

)(
l′ l L
m′ m M

)
(A.24)

l∑
ml=−l

|Ylml |
2 =

2l + 1

4π
,

∑
m

|Ωκm|2 =
2j + 1

4π
(A.25)

⟨la||Ck||lb⟩ = (−1)la
√

[la][lb]
(
la lb k
0 0 0

)
(A.26)

rq = |r|C1
q = |r|

√
4π
3
Y1q; r0 = z.

⟨nκ||rz||n′κ′⟩ = (nκ|r|n′κ′)⟨κ||C1||κ′⟩. (A.27)

⟨J ′IF ′||T k||JIF ⟩

= (−1)F+J′+I+k
√

[F ′][F ]

{
J I F
F ′ k J ′

}
⟨J ′||T k||J⟩ (A.28)

where ([a] ≡ 2a+ 1).

23



ampsci: Method B. M. Roberts – July 2024

From Ch. 13 of Ref. [8]:

⟨jls||l||j′l′s′⟩ = δll′δss′(−1)j
′+l+s+1

√
[j][j′][l]l(l + 1)

{
j 1 j′

l s l

}
⟨jls||s||j′l′s′⟩ = δll′δss′(−1)j+l+s+1

√
[j][j′][s]s(s+ 1)

{
j 1 j′

s l s

}
.

(A.29)

A 6-j symbol {
1 2 3
4 5 6

}
(A.30)

is non-zero only if each of the triads obey triangle inequality,

∆(1, 2, 3), ∆(3, 4, 5), ∆(2, 4, 6), ∆(5, 6, 1). (A.31)

A.5 Useful definitions/identities

Dirac matrices

Dirac matrices are defined by the relation:

{γµ, γν} = 2gµν . (A.32)

In the Dirac representation, with γ5 ≡ iγ0γ1γ2γ2, they are:

γ0 =

(
1 0
0 −1

)
, γa =

(
0 σa

−σa 0

)
, γ5 =

(
0 1
1 0

)
. (A.33)

Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(A.34)

σiσj = iϵijkσk + δij , [σi, σj ] = 2iϵijkσk (A.35)

(σ · a) (σ · b) = a · b+ iσ · (a× b) (A.36)

(σ · p)y(r)Ωκm = i

(
y′ +

κ+ 1

r
y

)
Ω−κ,m (A.37)

(σ · n)Ωκm = −Ω−κ,m. (A.38)

Dirac orbitals (spherical potential, Dirac basis)

ϕnκm(r) =
1

r

(
fnκ(r)Ωκm(n)
ignκ(r)Ω−κ,m(n)

)
, (A.39)

Ωκm(n) =
∑

σ=±1/2

⟨l,m− σ, 1/2, σ|j,m⟩Yl,m−σ(n)χσ (A.40)

=

(−1)j−l−1/2
√

κ+1/2−m
2κ+1

Yl,m−1/2(θ, ϕ)√
κ+1/2+m

2κ+1
Yl,m+1/2(θ, ϕ)

 , (A.41)

where j and l are the total and orbital angular momentum, with

κ = (l − j)(2j + 1) , l = |κ+ 1/2| − 1/2 , j = |κ| − 1/2. (A.42)

Note that strictly parity (−1)l, not l, is the good quantum number.
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