ampsci
c++ program for high-precision atomic structure calculations of single-valence systems
Loading...
Searching...
No Matches
AdamsMoulton.hpp
1#pragma once
2#include <algorithm>
3#include <array>
4#include <cassert>
5#include <complex>
6#include <tuple>
7#include <type_traits>
8
11namespace AdamsMoulton {
12
13//==============================================================================
14
18
78template <typename T = double, typename Y = double>
81 virtual Y a(T t) const = 0;
82 virtual Y b(T t) const = 0;
83 virtual Y c(T t) const = 0;
84 virtual Y d(T t) const = 0;
86 virtual Y Sf(T) const { return Y(0); };
87 virtual Y Sg(T) const { return Y(0); };
88 virtual ~DerivativeMatrix() = default;
89};
90
91//==============================================================================
92
93// User-defined type-trait: Checks whether T is a std::complex type
94template <typename T>
95struct is_complex : std::false_type {};
96// User-defined type-trait: Checks whether T is a std::complex type
97template <typename T>
98struct is_complex<std::complex<T>> : std::true_type {};
100
108template <typename T>
109constexpr bool is_complex_v = is_complex<T>::value;
110
111//==============================================================================
112
114
121template <typename T, typename U, std::size_t N, std::size_t M>
122constexpr T inner_product(const std::array<T, N> &a,
123 const std::array<U, M> &b) {
124 static_assert(std::is_convertible_v<U, T>,
125 "In inner_product, type of second array (U) must be "
126 "convertable to that of dirst (T)");
127 constexpr std::size_t Size = std::min(N, M);
128
129 if constexpr (Size == 0) {
130 return T{0};
131 } else if constexpr (!std::is_same_v<T, U> && is_complex_v<T>) {
132 // This is to avoid float conversion warning in case that U=double,
133 // T=complex<float>; want to case b to float, then to complex<float>
134 T res = a[0] * static_cast<typename T::value_type>(b[0]);
135 for (std::size_t i = 1; i < Size; ++i) {
136 res += a[i] * static_cast<typename T::value_type>(b[i]);
137 }
138 return res;
139 } else {
140 T res = a[0] * static_cast<T>(b[0]);
141 for (std::size_t i = 1; i < Size; ++i) {
142 res += a[i] * static_cast<T>(b[i]);
143 }
144 return res;
145 }
146}
147
148//==============================================================================
149
150namespace helper {
151
152// Simple struct for storing "Raw" Adams ("B") coefficients.
153/*
154Stored as integers, with 'denominator' factored out. \n
155Converted to double ("A" coefs) once, at compile time (see below). \n
156Adams coefficients, a_k, defined such that: \n
157 \f[ F_{n+K} = F_{n+K-1} + dx * \sum_{k=0}^K a_k y_{n+k} \f]
158where:
159 \f[ y = d(F)/dr \f]
160Note: the 'order' of the coefs is reversed compared to some sources.
161The final coefficient is separated, such that: \n
162 \f[ a_k = b_k / denom \f]
163for k = {0,1,...,K-1} \n
164and
165 \f[ a_K = b_K / denom \f]
166*/
167template <std::size_t K>
168struct AdamsB {
169 long denom;
170 std::array<long, K> bk;
171 long bK;
172};
173
174// List of Adams coefficients data
175/*
176Note: there is (of course) no 0-step Adams method.
177The entry at [0] is invalid, and will produce 0.
178It is included so that the index of this list matches the order of the method.
179Program will not compile (static_asser) is [0] is requested.
180Note: assumes that the kth element corresponds to k-order AM method.
181*/
182static constexpr auto ADAMS_data = std::tuple{
183 AdamsB<0>{1, {}, 0}, // invalid entry, but want index to match order
184 AdamsB<1>{2, {1}, 1},
185 AdamsB<2>{12, {-1, 8}, 5},
186 AdamsB<3>{24, {1, -5, 19}, 9},
187 AdamsB<4>{720, {-19, 106, -264, 646}, 251},
188 AdamsB<5>{1440, {27, -173, 482, -798, 1427}, 475},
189 AdamsB<6>{60480, {-863, 6312, -20211, 37504, -46461, 65112}, 19087},
190 AdamsB<7>{
191 120960, {1375, -11351, 41499, -88547, 123133, -121797, 139849}, 36799},
192 AdamsB<8>{3628800,
193 {-33953, 312874, -1291214, 3146338, -5033120, 5595358, -4604594,
194 4467094},
195 1070017},
196 AdamsB<9>{7257600,
197 {57281, -583435, 2687864, -7394032, 13510082, -17283646, 16002320,
198 -11271304, 9449717},
199 2082753},
200 AdamsB<10>{479001600,
201 {-3250433, 36284876, -184776195, 567450984, -1170597042,
202 1710774528, -1823311566, 1446205080, -890175549, 656185652},
203 134211265},
204 AdamsB<11>{958003200,
205 {5675265, -68928781, 384709327, -1305971115, 3007739418,
206 -4963166514, 6043521486, -5519460582, 3828828885, -2092490673,
207 1374799219},
208 262747265},
209 AdamsB<12>{2615348736000,
210 {-13695779093, 179842822566, -1092096992268, 4063327863170,
211 -10344711794985, 19058185652796, -26204344465152,
212 27345870698436, -21847538039895, 13465774256510, -6616420957428,
213 3917551216986},
214 703604254357}};
215
216} // namespace helper
217
218//==============================================================================
219
222static constexpr std::size_t K_max =
223 std::tuple_size_v<decltype(helper::ADAMS_data)> - 1;
224
225//==============================================================================
226
229
242template <std::size_t K, typename = std::enable_if_t<(K > 0)>,
243 typename = std::enable_if_t<(K <= K_max)>>
244struct AM_Coefs {
245
246private:
247 // Forms the (double) ak coefficients, from the raw (int) bk ones
248 static constexpr std::array<double, K> make_ak() {
249 const auto &am = std::get<K>(helper::ADAMS_data);
250 static_assert(
251 am.bk.size() == K,
252 "Kth Entry in ADAMS_data must correspond to K-order AM method");
253 std::array<double, K> tak{};
254 for (std::size_t i = 0; i < K; ++i) {
255 tak.at(i) = double(am.bk.at(i)) / double(am.denom);
256 }
257 return tak;
258 }
259
260 // Forms the final (double) aK coefficient, from the raw (int) bK one
261 static constexpr double make_aK() {
262 const auto &am = std::get<K>(helper::ADAMS_data);
263 return (double(am.bK) / double(am.denom));
264 }
265
266public:
268 static constexpr std::array<double, K> ak{make_ak()};
270 static constexpr double aK{make_aK()};
271};
272
273//==============================================================================
275
435template <std::size_t K, typename T = double, typename Y = double>
437 static_assert(K > 0, "Order (K) for Adams method must be K>0");
438 static_assert(K <= K_max,
439 "Order (K) requested for Adams method too "
440 "large. Adams coefficients are implemented up to K_max-1 only");
441 static_assert(
442 is_complex_v<Y> || std::is_floating_point_v<Y>,
443 "Template parameter Y (function values and dt) must be floating point "
444 "or complex");
445 static_assert(is_complex_v<Y> || std::is_floating_point_v<Y> ||
446 std::is_integral_v<T>,
447 "Template parameter T (derivative matrix argument) must be "
448 "floating point, complex, or integral");
449
450private:
451 // Stores the AM coefficients
452 static constexpr AM_Coefs<K> am{};
453 // step size:
454 Y m_dt;
455 // previous 't' value
456 // T m_t{T(0)}; // Should be invalid (nan), but no nan for int
457 // Pointer to the derivative matrix
458 const DerivativeMatrix<T, Y> *m_D;
459
460public:
462
467 std::array<Y, K> f{}, g{};
468
470 std::array<Y, K> df{}, dg{};
471
473 std::array<T, K> t{};
474
475 Y S_scale{1.0};
476
477public:
481
487 ODESolver2D(Y dt, const DerivativeMatrix<T, Y> *D) : m_dt(dt), m_D(D) {
488 assert(dt != Y{0.0} && "Cannot have zero step-size in ODESolver2D");
489 assert(D != nullptr && "Cannot have null Derivative Matrix in ODESolver2D");
490 }
491
493 constexpr std::size_t K_steps() const { return K; }
494
496 Y last_f() { return f.back(); }
498 Y last_g() { return g.back(); }
500 T last_t() { return t.back(); }
502 Y dt() { return m_dt; }
503
505 Y dfdt(Y ft, Y gt, T tt) const {
506 return m_D->a(tt) * ft + m_D->b(tt) * gt + S_scale * m_D->Sf(tt);
507 }
509 Y dgdt(Y ft, Y gt, T tt) const {
510 return m_D->c(tt) * ft + m_D->d(tt) * gt + S_scale * m_D->Sg(tt);
511 }
512
515
527 void drive(T t_next) {
528
529 // assert (t_next = Approx[next_t(last_t())])
530
531 // Use AM method to determine new values, given previous K values:
532 const auto sf = f.back() + m_dt * (inner_product(df, am.ak) +
533 am.aK * S_scale * m_D->Sf(t_next));
534 const auto sg = g.back() + m_dt * (inner_product(dg, am.ak) +
535 am.aK * S_scale * m_D->Sg(t_next));
536
537 const auto a = m_D->a(t_next);
538 const auto b = m_D->b(t_next);
539 const auto c = m_D->c(t_next);
540 const auto d = m_D->d(t_next);
541
542 const auto a0 = m_dt * static_cast<Y>(am.aK);
543 const auto a02 = a0 * a0;
544 const auto det_inv =
545 Y{1.0} / (Y{1.0} - (a02 * (b * c - a * d) + a0 * (a + d)));
546 const auto fi = (sf - a0 * (d * sf - b * sg)) * det_inv;
547 const auto gi = (sg - a0 * (-c * sf + a * sg)) * det_inv;
548
549 // Shift values along. nb: rotate({1,2,3,4}) = {2,3,4,1}
550 // We keep track of previous K values in order to determine next value
551 std::rotate(f.begin(), f.begin() + 1, f.end());
552 std::rotate(g.begin(), g.begin() + 1, g.end());
553 std::rotate(df.begin(), df.begin() + 1, df.end());
554 std::rotate(dg.begin(), dg.begin() + 1, dg.end());
555 std::rotate(t.begin(), t.begin() + 1, t.end());
556
557 // Sets new values:
558 t.back() = t_next;
559 f.back() = fi;
560 g.back() = gi;
561 df.back() = dfdt(fi, gi, t_next);
562 dg.back() = dgdt(fi, gi, t_next);
563 }
564
568 void drive() { drive(next_t(last_t())); }
569
572
581 void solve_initial_K(T t0, Y f0, Y g0) {
582 t.at(0) = t0;
583 f.at(0) = f0;
584 g.at(0) = g0;
585 df.at(0) = dfdt(f0, g0, t0);
586 dg.at(0) = dgdt(f0, g0, t0);
587 first_k_i<1>(next_t(t0));
588 }
589
590private:
591 // only used in solve_initial_K(). Use this, because it works for double t,
592 // where next value is t+dt, and for integral t, where next value is t++ is
593 // driving forward (dt>0), or t-- if driving backwards (dt<0)
594 T next_t(T last_t) {
595 if constexpr (std::is_integral_v<T> && is_complex_v<Y>) {
596 return (m_dt.real() > 0.0) ? last_t + 1 : last_t - 1;
597 } else if constexpr (std::is_integral_v<T>) {
598 return (m_dt > 0.0) ? last_t + 1 : last_t - 1;
599 } else {
600 return last_t + m_dt;
601 }
602 }
603
604 // Used recursively by solve_initial_K() to find first K points
605 template <std::size_t ik>
606 void first_k_i(T t_next) {
607 if constexpr (ik >= K) {
608 (void)t_next; // suppress unused variable warning on old g++ versions
609 return;
610 } else {
611 constexpr AM_Coefs<ik> ai{};
612 // nb: ai.ak is smaller than df; inner_product still works
613 const auto sf = f.at(ik - 1) + m_dt * (inner_product(df, ai.ak) +
614 am.aK * S_scale * m_D->Sf(t_next));
615 const auto sg = g.at(ik - 1) + m_dt * (inner_product(dg, ai.ak) +
616 am.aK * S_scale * m_D->Sg(t_next));
617 const auto a0 = m_dt * static_cast<Y>(ai.aK);
618 const auto a02 = a0 * a0;
619 const auto a = m_D->a(t_next);
620 const auto b = m_D->b(t_next);
621 const auto c = m_D->c(t_next);
622 const auto d = m_D->d(t_next);
623 const auto det_inv =
624 Y{1.0} / (Y{1.0} - (a02 * (b * c - a * d) + a0 * (a + d)));
625 const auto fi = (sf - a0 * (d * sf - b * sg)) * det_inv;
626 const auto gi = (sg - a0 * (-c * sf + a * sg)) * det_inv;
627 // Sets new values:
628 t.at(ik) = t_next;
629 f.at(ik) = fi;
630 g.at(ik) = gi;
631 df.at(ik) = dfdt(fi, gi, t_next);
632 dg.at(ik) = dgdt(fi, gi, t_next);
633 // call recursively
634 first_k_i<ik + 1>(next_t(t_next));
635 }
636 }
637};
638} // namespace AdamsMoulton
Solves a 2D system of ODEs using a K-step Adams-Moulton method.
Definition AdamsMoulton.hpp:436
T last_t()
Returns most recent t value; last_f() := f(last_t())
Definition AdamsMoulton.hpp:500
Y last_g()
Returns most recent g value. Can also access g array directly.
Definition AdamsMoulton.hpp:498
std::array< T, K > t
Array to store the previous K values of t: f.at(i) = f(t.at(i))
Definition AdamsMoulton.hpp:473
constexpr std::size_t K_steps() const
Returns the AM order (number of steps), K.
Definition AdamsMoulton.hpp:493
void drive(T t_next)
Drives the DE system to next value, F(t), assuming system has already been solved for the K previous ...
Definition AdamsMoulton.hpp:527
Y last_f()
Returns most recent f value. Can also access f array directly.
Definition AdamsMoulton.hpp:496
void solve_initial_K(T t0, Y f0, Y g0)
Automatically sets the first K values for F (and dF), given a single initial value for F,...
Definition AdamsMoulton.hpp:581
Y dgdt(Y ft, Y gt, T tt) const
Returns derivative, dg/dt(t), given f(t),g(t),t.
Definition AdamsMoulton.hpp:509
Y dfdt(Y ft, Y gt, T tt) const
Returns derivative, df/dt(t), given f(t),g(t),t.
Definition AdamsMoulton.hpp:505
void drive()
Overload of drive(T t) for 'default' case, where next t is defined as last_t + dt (for arithmetic/com...
Definition AdamsMoulton.hpp:568
ODESolver2D(Y dt, const DerivativeMatrix< T, Y > *D)
Construct the solver. dt is the (constant) step size.
Definition AdamsMoulton.hpp:487
std::array< Y, K > df
Arrays to store the previous K values of derivatives, df and dg.
Definition AdamsMoulton.hpp:470
std::array< Y, K > f
Arrays to store the previous K values of f and g.
Definition AdamsMoulton.hpp:467
Y dt()
Returns the step size.
Definition AdamsMoulton.hpp:502
Contains classes and functions which use general N-step Adams Moulton method to solve systems of 2x2 ...
Definition AdamsMoulton.hpp:11
constexpr bool is_complex_v
User-defined type-trait: Checks whether T is a std::complex type.
Definition AdamsMoulton.hpp:109
constexpr T inner_product(const std::array< T, N > &a, const std::array< U, M > &b)
Inner product of two std::arrays.
Definition AdamsMoulton.hpp:122
constexpr double c
speed of light in a.u. (=1/alpha)
Definition PhysConst_constants.hpp:63
Holds the K+1 Adams-Moulton ak coefficients for the K-step AM method. Final one, aK,...
Definition AdamsMoulton.hpp:244
static constexpr std::array< double, K > ak
First K coefficients: ak for k={0,1,...,K-1}.
Definition AdamsMoulton.hpp:268
static constexpr double aK
Final aK coefficients: ak for k=K.
Definition AdamsMoulton.hpp:270
Pure-virtual struct, holds the derivative matrix for 2x2 system of ODEs. Derive from this,...
Definition AdamsMoulton.hpp:79
virtual Y a(T t) const =0
a,b,c,d are derivative matrix functions; all must be user implemented
virtual Y Sf(T) const
Sf and Sg are optional inhomogenous terms.
Definition AdamsMoulton.hpp:86