ampsci
c++ program for high-precision atomic structure calculations of single-valence systems
|
Magnetic dipole operator: <a||M1||b> More...
#include <M1.hpp>
Inherits DiracOperator::TensorOperator.
Public Member Functions | |
M1 (const Grid &gr, const double alpha, const double omega=0.0) | |
M1 & | operator= (const M1 &)=delete |
M1 (const M1 &)=default | |
std::string | name () const override final |
Returns "name" of operator (e.g., 'E1') | |
std::string | units () const override final |
Returns units of operator (usually au, may be MHz, etc.) | |
double | angularF (const int ka, const int kb) const override final |
angularF: links radiation integral to RME. RME = <a||h||b> = angularF(a,b) * radial_int(a,b) | |
double | angularCff (int, int) const override final |
double | angularCgg (int, int) const override final |
double | angularCfg (int, int) const override final |
double | angularCgf (int, int) const override final |
void | updateFrequency (const double omega) override final |
Update frequency for frequency-dependant operators. | |
Public Member Functions inherited from DiracOperator::TensorOperator | |
bool | freqDependantQ () const |
bool | isZero (const int ka, int kb) const |
If matrix element <a|h|b> is zero, returns true. | |
bool | isZero (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
bool | selectrion_rule (int twoJA, int piA, int twoJB, int piB) const |
void | scale (double lambda) |
Permanently re-scales the operator by constant, lambda. | |
const std::vector< double > & | getv () const |
Returns a const ref to vector v. | |
double | getc () const |
Returns a const ref to constant c. | |
int | get_d_order () const |
bool | imaginaryQ () const |
returns true if operator is imaginary (has imag MEs) | |
int | rank () const |
int | parity () const |
returns parity, as integer (+1 or -1) | |
int | symm_sign (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
returns relative sign between <a||x||b> and <b||x||a> | |
virtual DiracSpinor | radial_rhs (const int kappa_a, const DiracSpinor &Fb) const |
radial_int = Fa * radial_rhs(a, Fb) (a needed for angular factor) | |
virtual double | radialIntegral (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
Defined via <a||h||b> = angularF(a,b) * radialIntegral(a,b) (Note: if radial_rhs is overridden, then radialIntegral must also be_. | |
double | rme3js (const int twoja, const int twojb, int two_mb=1, int two_q=0) const |
ME = rme3js * RME. | |
DiracSpinor | reduced_rhs (const int ka, const DiracSpinor &Fb) const |
<a||h||b> = Fa * reduced_rhs(a, Fb) (a needed for angular factor) | |
DiracSpinor | reduced_lhs (const int ka, const DiracSpinor &Fb) const |
<b||h||a> = Fa * reduced_lhs(a, Fb) (a needed for angular factor) | |
double | reducedME (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
The reduced matrix element. | |
double | fullME (const DiracSpinor &Fa, const DiracSpinor &Fb, std::optional< int > two_ma=std::nullopt, std::optional< int > two_mb=std::nullopt, std::optional< int > two_q=std::nullopt) const |
Returns "full" matrix element, for optional (ma, mb, q) [taken as int 2*]. If not specified, returns z-component (q=0), with ma=mb=min(ja,jb) | |
Additional Inherited Members | |
Protected Member Functions inherited from DiracOperator::TensorOperator | |
TensorOperator (int rank_k, Parity pi, double constant=1.0, const std::vector< double > &inv={}, int diff_order=0, Realness RorI=Realness::real, bool freq_dep=false) | |
Protected Attributes inherited from DiracOperator::TensorOperator | |
int | m_rank |
Parity | m_parity |
int | m_diff_order |
Realness | opC |
bool | m_freqDependantQ {false} |
double | m_constant |
std::vector< double > | m_vec |
Magnetic dipole operator: <a||M1||b>
\[ <a||M1||b> = R (k_a + k_b) <-k_a||C^1||k_b> \]
\[R = \frac{-3}{\alpha^2\omega} \int (f_ag_b+g_af_b) j_1(kr) \, dr\]
\( k = \omega/c = \omega*\alpha \). Negative sign (and alpha) puts into units |mu_B|. For k<<1 (static case): j1(kr) -> (r*k)/3,
\[R = \frac{-1}{\alpha} \int (f_ag_b+g_af_b) r \, dr\]
Be careful with this operator - compare with: U. I. Safronova, M. S. Safronova, and W. R. Johnson, Phys. Rev. A 95, 042507 (2017).