ampsci
c++ program for high-precision atomic structure calculations of single-valence systems
|
General operator (virtual base class); operators derive from this. More...
#include <TensorOperator.hpp>
Inherited by DiracOperator::E1v, DiracOperator::Ek, DiracOperator::M1, DiracOperator::M1nr, DiracOperator::MLVP, DiracOperator::ScalarOperator, DiracOperator::VertexQED, DiracOperator::hfs, DiracOperator::j, DiracOperator::jL, DiracOperator::l, DiracOperator::p, and DiracOperator::s.
Public Member Functions | |
bool | freqDependantQ () const |
bool | isZero (const int ka, int kb) const |
If matrix element <a|h|b> is zero, returns true. | |
bool | isZero (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
bool | selectrion_rule (int twoJA, int piA, int twoJB, int piB) const |
virtual void | updateFrequency (const double) |
Update frequency for frequency-dependant operators. | |
void | scale (double lambda) |
Permanently re-scales the operator by constant, lambda. | |
const std::vector< double > & | getv () const |
Returns a const ref to vector v. | |
double | getc () const |
Returns a const ref to constant c. | |
int | get_d_order () const |
bool | imaginaryQ () const |
returns true if operator is imaginary (has imag MEs) | |
int | rank () const |
int | parity () const |
returns parity, as integer (+1 or -1) | |
int | symm_sign (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
returns relative sign between <a||x||b> and <b||x||a> | |
virtual std::string | name () const |
Returns "name" of operator (e.g., 'E1') | |
virtual std::string | units () const |
Returns units of operator (usually au, may be MHz, etc.) | |
virtual double | angularCff (int, int) const |
virtual double | angularCgg (int, int) const |
virtual double | angularCfg (int, int) const |
virtual double | angularCgf (int, int) const |
virtual double | angularF (const int, const int) const =0 |
angularF: links radiation integral to RME. RME = <a||h||b> = angularF(a,b) * radial_int(a,b) | |
virtual DiracSpinor | radial_rhs (const int kappa_a, const DiracSpinor &Fb) const |
radial_int = Fa * radial_rhs(a, Fb) (a needed for angular factor) | |
virtual double | radialIntegral (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
Defined via <a||h||b> = angularF(a,b) * radialIntegral(a,b) (Note: if radial_rhs is overridden, then radialIntegral must also be_. | |
double | rme3js (const int twoja, const int twojb, int two_mb=1, int two_q=0) const |
ME = rme3js * RME. | |
DiracSpinor | reduced_rhs (const int ka, const DiracSpinor &Fb) const |
<a||h||b> = Fa * reduced_rhs(a, Fb) (a needed for angular factor) | |
DiracSpinor | reduced_lhs (const int ka, const DiracSpinor &Fb) const |
<b||h||a> = Fa * reduced_lhs(a, Fb) (a needed for angular factor) | |
double | reducedME (const DiracSpinor &Fa, const DiracSpinor &Fb) const |
The reduced matrix element. | |
double | fullME (const DiracSpinor &Fa, const DiracSpinor &Fb, std::optional< int > two_ma=std::nullopt, std::optional< int > two_mb=std::nullopt, std::optional< int > two_q=std::nullopt) const |
Returns "full" matrix element, for optional (ma, mb, q) [taken as int 2*]. If not specified, returns z-component (q=0), with ma=mb=min(ja,jb) | |
Protected Member Functions | |
TensorOperator (int rank_k, Parity pi, double constant=1.0, const std::vector< double > &inv={}, int diff_order=0, Realness RorI=Realness::real, bool freq_dep=false) | |
Protected Attributes | |
int | m_rank |
Parity | m_parity |
int | m_diff_order |
Realness | opC |
bool | m_freqDependantQ {false} |
double | m_constant |
std::vector< double > | m_vec |
General operator (virtual base class); operators derive from this.
k is rank, c is multiplicative constant, d_order is derivative order, pi is parity, may be Parity::even or odd. RorI may be Realness::real or Realness::imaginary. Note: You may not construct a TensorOperator. Instead, you must construct one of the derived 'operators' (there are some general ones); see operators.hpp for list of operators. Operators work by overrideing the angularCxx() functions and angularF(). c, v, and Cxx are included in radial integral.