|
ampsci
c++ program for high-precision atomic structure calculations of single-valence systems
|
Uses time-dependent Hartree-Fock method to include core-polarisation (RPA) corrections to matrix elements of some external field operator. More...
#include <TDHF.hpp>
Inherits ExternalField::CorePolarisation.
Inherited by ExternalField::TDHFbasis.
Public Member Functions | |
| TDHF (const DiracOperator::TensorOperator *const h, const HF::HartreeFock *const hf) | |
| Contruct TDHF operator: takes pointer to operator and to HF object. | |
| virtual void | solve_core (const double omega, int max_its=100, const bool print=true) override |
| Solves TDHF equations self-consistantly for core electrons at frequency omega. | |
| virtual Method | method () const override |
| Returns RPA method. | |
| virtual void | clear () override final |
| Clears the dPsi orbitals (sets to zero) | |
| double | dV (const DiracSpinor &Fa, const DiracSpinor &Fb, bool conj) const |
| Calculate reduced matrix element <a||dV||b> or <a||dV*||b>. Will exclude orbital 'Fexcl' from sum over core (for tests only) | |
| virtual double | dV (const DiracSpinor &Fa, const DiracSpinor &Fb) const override final |
| As above, but automatically determines if 'conjugate' version required (Based on sign of [en_a-en_b]) | |
| DiracSpinor | dV_rhs (const int kappa_n, const DiracSpinor &Fm, bool conj=false) const |
| Returns "reduced partial matrix element RHS": dV||Fb}. Note: Fa * dV_rhs(..) equiv to dV(..) | |
| const std::vector< DiracSpinor > & | get_dPsis (const DiracSpinor &Fc, dPsiType XorY) const |
| Returns const ref to dPsi orbitals for given core orbital Fc. | |
| const DiracSpinor & | get_dPsi_x (const DiracSpinor &Fc, dPsiType XorY, const int kappa_x) const |
| Returns const reference to dPsi orbital of given kappa. | |
| DiracSpinor | solve_dPsi (const DiracSpinor &Fv, const double omega, dPsiType XorY, const int kappa_beta, const MBPT::CorrelationPotential *const Sigma=nullptr, StateType st=StateType::ket, bool incl_dV=true) const |
| Forms \delta Psi_v for valence state Fv (including core pol.) - 1 kappa. | |
| std::vector< DiracSpinor > | solve_dPsis (const DiracSpinor &Fv, const double omega, dPsiType XorY, const MBPT::CorrelationPotential *const Sigma=nullptr, StateType st=StateType::ket, bool incl_dV=true) const |
| Forms \delta Psi_v for valence state Fv for all kappas (see solve_dPsi) | |
| TDHF & | operator= (const TDHF &)=delete |
| TDHF (const TDHF &)=default | |
Public Member Functions inherited from ExternalField::CorePolarisation | |
| double | last_eps () const |
| Returns eps (convergance) of last solve_core run. | |
| double | last_its () const |
| Returns its (# of iterations) of last solve_core run. | |
| double | last_omega () const |
| Returns omega (frequency) of last solve_core run. | |
| int | rank () const |
| int | parity () const |
| bool | imagQ () const |
| double & | eps_target () |
| Convergance target. | |
| double | eps_target () const |
| Convergance target. | |
| double | eta () const |
| Damping factor; 0 means no damping. Must have 0 <= eta < 1. | |
| void | set_eta (double eta) |
| Set/update damping factor; 0 means no damping. Must have 0 <= eta < 1. | |
| CorePolarisation & | operator= (const CorePolarisation &)=delete |
| CorePolarisation (const CorePolarisation &)=default | |
Protected Attributes | |
| std::vector< std::vector< DiracSpinor > > | m_X {} |
| std::vector< std::vector< DiracSpinor > > | m_Y {} |
| std::vector< std::vector< DiracSpinor > > | m_hFcore {} |
| const HF::HartreeFock *const | p_hf |
| const std::vector< DiracSpinor > | m_core |
| const double | m_alpha |
| const HF::Breit *const | p_VBr |
Protected Attributes inherited from ExternalField::CorePolarisation | |
| const DiracOperator::TensorOperator * | m_h |
| double | m_core_eps {1.0} |
| int | m_core_its {0} |
| double | m_core_omega {0.0} |
| int | m_rank |
| int | m_pi |
| bool | m_imag |
| double | m_eta {0.4} |
| double | m_eps {1.0e-10} |
Additional Inherited Members | |
Protected Member Functions inherited from ExternalField::CorePolarisation | |
| CorePolarisation (const DiracOperator::TensorOperator *const h) | |
Uses time-dependent Hartree-Fock method to include core-polarisation (RPA) corrections to matrix elements of some external field operator.
Solves set of TDHF equations
\[ (H -\epsilon \pm \omega)\delta\psi_b = -(\delta V + \delta\epsilon_c)\psi_b \]
self consistantly for each electron in the core to determine dV. (See 'ampsci.pdf' for detailed physics description). There is an option to limit the maximum number of iterations; set to 1 to get the first-order correction (nb: no damping is used for first iteration).
\[ \langle \phi_a || \delta V || \phi_b \rangle \]
|
finaloverridevirtual |
Clears the dPsi orbitals (sets to zero)
Implements ExternalField::CorePolarisation.
|
finaloverridevirtual |
As above, but automatically determines if 'conjugate' version required (Based on sign of [en_a-en_b])
Implements ExternalField::CorePolarisation.
|
inlineoverridevirtual |
Returns RPA method.
Implements ExternalField::CorePolarisation.
Reimplemented in ExternalField::TDHFbasis.
|
overridevirtual |
Solves TDHF equations self-consistantly for core electrons at frequency omega.
Will iterate up to a maximum of max_its. Set max_its=1 to get first-order correction [note: no damping is used for first itteration]. If print=true, will write progress to screen.
Implements ExternalField::CorePolarisation.
Reimplemented in ExternalField::TDHFbasis.
| DiracSpinor ExternalField::TDHF::solve_dPsi | ( | const DiracSpinor & | Fv, |
| const double | omega, | ||
| dPsiType | XorY, | ||
| const int | kappa_beta, | ||
| const MBPT::CorrelationPotential *const | Sigma = nullptr, |
||
| StateType | st = StateType::ket, |
||
| bool | incl_dV = true |
||
| ) | const |
Forms \delta Psi_v for valence state Fv (including core pol.) - 1 kappa.
Solves
\[ (H + \Sigma - \epsilon - \omega)X = -(h + \delta V - \delta\epsilon)\psi \]
or
\[ (H + \Sigma - \epsilon + \omega)Y = -(h^\dagger + \delta V^\dagger - \delta\epsilon)Psi\]
Returns \( \chi_\beta \) for given kappa_beta, where
\[ X_{j,m} = (-1)^{j_\beta-m}tjs(j,k,j;-m,0,m)\chi_j \]
XorY takes values: dPsiType::X or dPsiType::Y. st takes values: StateType::ket or StateType::bra